Face Recognition Using Fisher Linear Discriminant Analysis and Support Vector Machine

  • Sweta Thakur
  • Jamuna K. Sing
  • Dipak K. Basu
  • Mita Nasipuri
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)


A new face recognition method is presented based on Fisher’s Linear Discriminant Analysis (FLDA) and Support Vector Machine (SVM). The FLDA projects the high dimensional image space into a relatively low-dimensional space to acquire most discriminant features among the different classes. Recently, SVM has been used as a new technique for pattern classification and recognition. We have used SVM as a classifier, which classifies the face images based on the extracted features. We have tested the potential of SVM on the ORL face database. The experimental results show that the proposed method provides higher recognition rates compared to some other existing methods.


Fisher’s Linear Discriminant Analysis (FLDA) Support Vector Machine (SVM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turk, M., Pentland, A.: Eigenface for recognition. J. Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  2. 2.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces versus Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 23, 711–720 (1997)CrossRefGoogle Scholar
  3. 3.
    Cao, L.J., Chua, K.S., Chong, W.K., Lee, H.P., Gu, Q.M.: A comparison of PCA, KPCA and ICA for Dimensionality Reduction in Support Vector Machine. J. Neurocomputing 55, 321–336 (2003)CrossRefGoogle Scholar
  4. 4.
    Guo, G.D., Li, S.Z., Chen, K.L.: Support Vector Machine for Face Recognition. J. Image and Vision computing 19, 631–638 (2001)CrossRefGoogle Scholar
  5. 5.
    Chellapa, R., Wilson, C., Sirohey, S.: Human and machine recognition of faces: a survey. J. IEEE 83(5), 705–741 (1995)Google Scholar
  6. 6.
    ORL face database. AT&T Laboratories, Cambridge, U. K.,
  7. 7.
    Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Two-dimensional FLD for face recognition. J. Pattern Recognition 38, 1121–1124 (2005)CrossRefGoogle Scholar
  8. 8.
    Pan, Y.Q., Liu, Y., Zheng, Y.W.: Face recognition using kernel PCA and hybrid flexible neural tree. In: International Conference on Wavelet Analysis and Pattern Recognition, China, pp. 1361–1366 (2007)Google Scholar
  9. 9.
    Thakur, S., Sing, J.K., Basu, D.K., Nasipuri, M.: Face recognition by integrating RBF neural networks and a distance measure. In: International Conference on Computer,Communication, Control and Information Technology, India, pp. 264–269 (2009)Google Scholar
  10. 10.
    Vapnik, V.N.: Statistical learning theory. John Wiley & Sons, New York (1998)Google Scholar
  11. 11.
    Wang, L., Sun, Y.: A new approach for face recognition based on SGFS and SVM. Proc. IEEE, 527–530 (2007)Google Scholar
  12. 12.
    Weihong, L., Gong, W., Liang, Y., Chen, W.: Feature selection based on KPCA, SVM and GSFS for face recognition. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 344–350. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sweta Thakur
    • 1
  • Jamuna K. Sing
    • 2
  • Dipak K. Basu
    • 2
  • Mita Nasipuri
    • 2
  1. 1.Department of Information TechnologyNetaji Subhas Engineering CollegeKolkataIndia
  2. 2.Department of Computer Science & EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations