A New Position-Based Fast Radix-2 Algorithm for Computing the DHT

  • Gautam A. Shah
  • Tejmal S. Rathore
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)

Abstract

The radix-2 decimation-in-time fast Hartley transform algorithm for computing the DHT has been introduced by Bracewell. A set of fast algorithms were further developed by Sorenson et al. A new position-based fast radix-2 decimation-in-time algorithm that requires less number of multiplications than that of Sorenson is proposed. It exploits the characteristics of the DHT matrix and introduces multiplying structures in the signal flow-diagram (SFD). It exhibits an SFD with butterflies similar for each stage. The operation count for the proposed algorithm is determined. It is verified by implementing the program in C.

Keywords

Algorithm decimation-in-time discrete Hartley transform matrix approach radix-2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paik, C.H., Fox, M.D.: Fast Hartley transform for image processing. IEEE Trans. Medical Imaging 7(6), 149–153 (1988)CrossRefPubMedGoogle Scholar
  2. 2.
    Wu, J.L., Shiu, J.: Discrete Hartley transform in error control coding. IEEE Trans. Signal Processing 39(10), 2356–2359 (1991)CrossRefGoogle Scholar
  3. 3.
    Meher, P.K., Panda, G.: Unconstrained Hartley-domain least mean square adaptive filter. IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing 40(9), 582–585 (1993)CrossRefGoogle Scholar
  4. 4.
    Meher, P.K., Srikanthan, T., Patra, J.C.: Scalable and modular memory-based systolic architectures for discrete Hartley transform. IEEE Trans. Circuits and Systems-I: Fundamental Theory & Applications 53(5), 1065–1077 (2006)CrossRefGoogle Scholar
  5. 5.
    Bracewell, R.N.: The fast Hartley transform. Proc. IEEE 72(8), 1010–1018 (1984)CrossRefGoogle Scholar
  6. 6.
    Sorensen, H.V., Jones, D.L., Burrus, C.S., Heideman, M.T.: On computing the discrete Hartley transform. IEEE Trans. Acoustics, Speech, and Signal Processing 33(4), 1231–1238 (1985)CrossRefGoogle Scholar
  7. 7.
    Hou, H.S.: The Fast Hartley Transform Algorithm. IEEE Trans. Computers 36(2), 147–156 (1987)CrossRefGoogle Scholar
  8. 8.
    Malvar, H.S.: Fast computation of the discrete cosine transform and the discrete Hartley transform. IEEE Trans. Acoustics, Speech, and Signal Processing 35(10), 1484–1485 (1987)CrossRefGoogle Scholar
  9. 9.
    Prabhu, K.M.M., Nagesh, A.: New radix-3 and -6 decimation in frequency fast Hartley transform algorithms. Can. J. Elect. and Comp. Eng. 18(2), 65–69 (1993)CrossRefGoogle Scholar
  10. 10.
    Bi, G., Chen, Y.Q.: Fast DHT algorithms for length N = q*2m. IEEE Trans. Signal Processing 47(3), 900–903 (1999)CrossRefGoogle Scholar
  11. 11.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: A new split-radix FHT algorithm for length-q*2m DHTs. IEEE Trans. Circuits Syst. I, Reg. Papers 51(10), 2031–2043 (2004)CrossRefGoogle Scholar
  12. 12.
    Chiper, D.F., Swamy, M.N.S., Ahmad, M.O.: An efficient systolic array algorithm for the VLSI implementation of a prime-length DHT. In: Proc. Int. Symp. Signals, Circuits Syst (ISSCS 2005), July 2005, pp. 167–169 (2005)Google Scholar
  13. 13.
    Meher, P.K., Patra, J.C., Swamy, M.N.S.: High-throughput memory-based architecture for DHT using a new convolutional formulation. IEEE Trans. Circuits Syst. II, Exp. Briefs 54(7), 606–610 (2007)CrossRefGoogle Scholar
  14. 14.
    Wu, J.S., Shu, H.Z., Sehnadji, L., Luo, L.M.: Radix – 3 × 3 algorithm for the 2 –D discrete Hartley transform. IEEE Trans. Circuits Syst. II, Exp. Briefs 55(6), 566–570 (2008)CrossRefGoogle Scholar
  15. 15.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: An efficient three-dimensional decimation-in-time FHT algorithm based on the radix-2/4 approach. In: Proc. IEEE (ISSPIT), December 2004, pp. 52–55 (2004)Google Scholar
  16. 16.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: A split vector-radix algorithm for the 3-D discrete Hartley transform. IEEE Trans. Circuits Syst. I, Reg. Papers 53(9), 1966–1976 (2006)CrossRefGoogle Scholar
  17. 17.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: An efficient multidimensional decimation-in-frequency FHT algorithm based on the radix-2/4 approach. In: Proc. IEEE (ISCAS), May 2005, pp. 2405–2408 (2005)Google Scholar
  18. 18.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Multidimensional vector radix FHT algorithms. IEEE Trans. Circuits Syst. I, Reg. Papers 53(4), 905–917 (2006)CrossRefGoogle Scholar
  19. 19.
    Shah, G.A., Rathore, T.S.: Position-based method for computing the elements of the discrete Hartley transform matrix. In: Proc. Internat. Conf. IEEE Region 10, TENCON-2008, Hyderabad, India (2008)Google Scholar
  20. 20.
    Rathore, T.S.: Hartley transform – Properties and algorithms. In: Proc. National Conf. Real Time Systems, Indore, India, pp. 21–30 (1990)Google Scholar
  21. 21.
    Culhane, A.D., Peckerar, M.C., Marrian, C.R.K.: A neural net approach to discrete Hartley and Fourier transforms. IEEE Trans. Circuits and Systems 36(5), 695–703 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gautam A. Shah
    • 1
  • Tejmal S. Rathore
    • 2
  1. 1.Graduate Student Member, IEEE, Department of E&TC MPSTMENMIMS UniversityMumbaiIndia
  2. 2.Senior Member, IEEE, Department of E&TCSt. Francis Institute of TechnologyMumbaiIndia

Personalised recommendations