Swarm Intelligence Inspired Classifiers in Comparison with Fuzzy and Rough Classifiers: A Remote Sensing Approach

  • Shelly Bansal
  • Daya Gupta
  • V. K. Panchal
  • Shashi Kumar
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)


In recent years the remote sensing image classification has become a global research area for acquiring the geo-spatial information from satellite data. There are soft computing techniques like fuzzy sets and rough sets for remote sensing image classification. This paper presents some optimized approach of image classification of satellite multi spectral images which produces comparable results with the fuzzy or rough set based approach. Here we are presenting a comparison of the image classification by fuzzy set and rough set with the swarm techniques as Ant Colony Optimization(ACO) and Particle Swarm Optimization(PSO). The motivation of this paper is to use the improved swarm computing algorithms for the finding more accuracy in satellite image classification.


ACO PSO Remote Sensing Rough Set Fuzzy Set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies. In: Proceedings of the First European Conference on Artificial Life (ECAL 1991), pp. 134–142 (1991)Google Scholar
  2. 2.
    Bratton, D., Kennedy, J.: Defining a Standard for Particle Swarm Optimization. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium, Honolulu, Hawaii, USA (April 2007)Google Scholar
  3. 3.
    Kaichang, D.I., Deren, L.I., Deyi, L.I.: Remote Sensing Image Classification With Gis Data Based On Spatial Data Mining Techniques. Proceedings of IEEE (2007)Google Scholar
  4. 4.
    Hand, D.J.: Construction and Assessment of Classification Rules. Wiley, Chichester (1997)Google Scholar
  5. 5.
    Otero, F.E.B., Freitas, A.A., Johnson, C.G.: cAnt-Miner: Ans Ant Colony Classification Algorithm to Cope with Continuous Attributes. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)Google Scholar
  7. 7.
    Witten, I.H., Frank, E.: Data Mining–Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (1999)Google Scholar
  8. 8.
    Kennedy, Eberhart, R.C., Shi, Y.: SwarmIntelligence. Morgan Kaufmann/Academic Press, San Francisco (2001)Google Scholar
  9. 9.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, USA (2002)Google Scholar
  10. 10.
    Long III, W., Srihann, S.: Geoscience and Remote Sensing Symposium, Unsupervised and supervised classifications. In: Land cover classification of SSC image: unsupervised and supervised classification using ERDAS Imagine, IGARSS 2004. Proceedings, September 20-24, vol. 4 (2004)Google Scholar
  11. 11.
    Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)Google Scholar
  12. 12.
    Holden, N., Freitas, A.A.: A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data. In: Proc. 2005 IEEE Swarm Intelligence Symposium (SIS 2005), pp. 100–107. IEEE, Los Alamitos (2005)Google Scholar
  13. 13.
    Holden, N., Freitas, A.A.: Hierarchical Classification of GProtein-Coupled Receptors with a PSO/ACO Algorithm. In: Proc. IEEE Swarm Intelligence Symposium (SIS 2006), pp. 77–84. IEEE, Los Alamitos (2006)Google Scholar
  14. 14.
    Omkar, S.N., Manoj, K., Dipti, M.: Urban Satellite Image Classification using Biologically Inspired Techniques. Proceedings of IEEE (2007)Google Scholar
  15. 15.
    Panchal, V.K., Naresh, S., Shashi, K., Sonam, B.: Rough-Fuzzy Sets Tie-Up for Geospatial Information. In: Proceedings of International Conference on Emerging Scenarios in Space Technology and Applications (ESSTA2008) (SSTA 2008), Chennai, India, vol. I (2008)Google Scholar
  16. 16.
    Pawlak, Z.: Rough Set Theory and its Applications to Data Analysis. Cybernetics and Systems 29(7), 661–688 (1998)CrossRefGoogle Scholar
  17. 17.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)CrossRefGoogle Scholar
  18. 18.
    Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data Mining with an Ant Colony Optimization Algorithm. IEEE Trans. On Evolutionary Computation, special issue on Ant Colony algorithms 6(4), 321–332 (2002)CrossRefGoogle Scholar
  19. 19.
    Lillesand, T.M., Kiefer, R.W.: Remote Sensing and Image Interpretation, 6th edn. Wiley, Chichester (2008)Google Scholar
  20. 20.
    Sousa, T., Silva, A., Neves, A.: Particle Swarm based Data Mining Algorithms for classification tasks. Parallel Computing 30, 767–783 (2004)CrossRefGoogle Scholar
  21. 21.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI/MIT, Cambridge (1996)Google Scholar
  22. 22.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  23. 23.
    Zadeh, L.A.: Fuzzy logic and its application to approximate reasoning. In: Information processing 74, Proc. IFIP Congr., pp. 591–594 (1977)Google Scholar
  24. 24.
  25. 25.
  26. 26.
    Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection- Rough and Fuzzy Approaches. IEEE press, Los AlamitosGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shelly Bansal
    • 1
  • Daya Gupta
    • 1
  • V. K. Panchal
    • 2
  • Shashi Kumar
    • 2
  1. 1.Computer Science DepartmentDelhi College of EngineeringDelhi
  2. 2.Defence Terrain Research LabMetcalfe HouseDelhi

Personalised recommendations