Palmprint Based Verification System Using SURF Features

  • Badrinath G. Srinivas
  • Phalguni Gupta
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)

Abstract

This paper describes the design and development of a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The palmprint region extracted is robust to hand translation and rotation on the scanner. The system is tested on IITK database of 200 images and PolyU database of 7751 images. The system is found to be robust with respect to translation and rotation. It has FAR 0.02%, FRR 0.01% and accuracy of 99.98% and can be a suitable system for civilian applications and high-security environments.

Keywords

Robust Rotation Translation Scanner Online 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ribaric, S., Fratric, I.: A biometric identification system based on Eigenpalm and Eigenfinger features. IEEE Trans. on Pattern Analysis Machine Intelligence 27(11), 1698–1709 (2005)CrossRefGoogle Scholar
  2. 2.
    Zhang, D., Kong, W.-K., You, J., Wong, M.: Online palmprint identification. IEEE Transaction on Pattern Analysis and Machine Intelligence 25(9), 1041–1050 (2003)CrossRefGoogle Scholar
  3. 3.
    Kumar, A., Zhang, A.: Personal recognition using hand shape and texture. IEEE Transaction on Image Processing 15(8), 2454–2461 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhang, L., Zhang, D.: Characterization of Palmprints by Wavelet Signatures via Directional Context Modeling. IEEE Transaction on Systems, Man, and Cybernetics 34(3), 1335–11347 (2004)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Zhang, D., Shu, W.: Two novel characteristics in palmprint verification: Datum point invariance and line feature matching. Pattern Recognition 32(4), 691–702 (1999)CrossRefGoogle Scholar
  7. 7.
    Han, C.-C., Cheng, H.-L., Lin, C.-L., Fan, K.-C.: Personal authentication using palmprint features. Pattern Recognition 36, 371–381 (2003)CrossRefGoogle Scholar
  8. 8.
    International Committee for Information Technology Standards. Technical Committee M1-Biometrics (2005), http://www.incits.org/tc_home/m1.htm
  9. 9.
    The PolyU palmprint database, http://www.comp.polyu.edu.hk/~biometrics
  10. 10.
    Wenxin, L., Zhang, D., Xu, Z.: Palmprint Identification by Fourier Transform. Intl. Journal of Pattern Recognition and Artificial Intelligence 16(4), 417–432 (2002)CrossRefGoogle Scholar
  11. 11.
    Badrinath, G.S., Gupta, P.: An Efficient Multi-algorithmic Fusion System based on Palmprint for Personnel Identification. In: Intl. Conf. on Advanced Computing, pp. 759–764 (2007)Google Scholar
  12. 12.
    Ross, A., Jain, A.K.: Information fusion in biometrics. In: Pattern recognition letters, pp. 2115–2125 (2003)Google Scholar
  13. 13.
    Pavlidis, T.: Algorithms for graphics and image processing. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  14. 14.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Ninth European conference on computer vision, pp. 404–417 (2006)Google Scholar
  15. 15.
    Lu, G., Wang, K., Zhang, D.: Wavelet based independent component analysis for palmprint identification. In: Intl. conf. on Machine Learning and Cybernetics, pp. 3547–3550 (2004)Google Scholar
  16. 16.
    Wang, Y., Ruan, Q.: Kernel Fisher Discriminant Analysis for Palmprint Recognition. In: 18th Intl. Conf. on Pattern Recognition, pp. 457–460 (2006)Google Scholar
  17. 17.
    Bay, H., Fasel, B., Van, L.: Interactive museum guide: Fast and robust recognition of museum objects. In: First Intl. workshop on mobile vision (2006)Google Scholar
  18. 18.
    Murillo, A.C., Guerrero, J.J., Sagues, C.: SURF features for efficient robot localization with omnidirectional images. In: IEEE Intl. Conf. on Robotics and Automation, pp. 3901–3907 (2007)Google Scholar
  19. 19.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 511–518 (2001)Google Scholar
  20. 20.
    Shu, W., Zhang, D.: Automated Personal Identification by Palmprint. Optical Engineering 37(8), 2359–2362 (1998)CrossRefGoogle Scholar
  21. 21.
    Liu, X., Bowyer, K.W., Flynn, P.J.: Experiments with an Improved Iris Segmentation Algorithm. In: Fourth IEEE Workshop on Automatic Identification Advanced Technologies, pp. 118–123 (2005)Google Scholar
  22. 22.
    Independent Testing of Iris Recognition Technology Final Report. Int’l Biometric Group (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Badrinath G. Srinivas
    • 1
  • Phalguni Gupta
    • 1
  1. 1.Dept. of Computer Science and EngineeringIndian Institute of Technology KanpurIndia

Personalised recommendations