Indexing Iris Biometric Database Using Energy Histogram of DCT Subbands

  • Hunny Mehrotra
  • Badrinath G. Srinivas
  • Banshidhar Majhi
  • Phalguni Gupta
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)


The key concern of indexing is to retrieve small portion of database for searching the query. In the proposed paper iris database is indexed using energy histogram. The normalised iris image is divided into subbands using multiresolution DCT transformation. Energy based histogram is formed for each subband using all the images in the database. Each histogram is divided into fixed size bins to group the iris images having similar energy value. The bin number for each subband is obtained and all subands are traversed in Morton order to form a global key for each image. During database preparation the key is used to traverse the B tree. The images with same key are stored in the same leaf node. For a given query image, the key is generated and tree is traversed to end up to a leaf node. The templates stored at the leaf node are retrieved and compared with the query template to find the best match. The proposed indexing scheme is showing considerably low penetration rate of 0.63%, 0.06% and 0.20% for CASIA, BATH and IITK iris databases respectively.


Indexing Energy Histogram DCT Multiresolution Subband Coding B Tree Iris 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gupta, P., Sana, A., Mehrotra, H., Hwang, C.J.: An efficient indexing scheme for binary feature based biometric database. In: Proc. SPIE, vol. 6539, p. 653909 (2007)Google Scholar
  2. 2.
    Mhatre, A., Chikkerur, S., Govindaraju, V.: Indexing Biometric Databases using Pyramid Technique. Audio and Video-based Biometric Person Authentication (2005)Google Scholar
  3. 3.
    Jayaraman, U., Prakash, S., Devdatt, G.P.: An Indexing technique for biometric database. In: International Conference on Wavelet Analysis and Pattern Recognition, vol. 2, pp. 758–763 (2008)Google Scholar
  4. 4.
    Jayaraman, U., Prakash, S., Gupta, P.: Indexing Multimodal Biometric Databases Using Kd-Tree with Feature Level Fusion. Information Systems Security, 221–234 (2008)Google Scholar
  5. 5.
    Mukherjee, R., Ross, A.: Indexing iris images. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  6. 6.
    Kerbyson, D.J., Atherton, T.J.: Circle detection using Hough transform filters. In: Fifth International Conference on Image Processing and its Applications, pp. 370–374 (1995)Google Scholar
  7. 7.
    Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14, 21–40 (2004)CrossRefGoogle Scholar
  8. 8.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient Iris Recognition by Characterising Key Local Variations. IEEE Transactions on Image Processing 13(6), 739–750 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    Albuz, E., Kocalar, E., Khokhar, A.A.: Scalable Image Indexing and Retrieval using Wavelets (1998)Google Scholar
  10. 10.
    Wu, D., Wu, L.: Image retrieval based on subband energy histograms of reordered DCT coefficients. In: 6th International Conference on Signal Processing, vol. 1, pp. 26–30 (2002)Google Scholar
  11. 11.
    Khayam, S.A.: The Discrete Cosine Transform (DCT): Theory and Application. Tutorial Report, Michigan State University (2003)Google Scholar
  12. 12.
    Wayman, J.L.: Error rate equations for the general biometric system. IEEE Robotics & Automation Magazine 6(1), 35–48 (1999)CrossRefGoogle Scholar
  13. 13.
    Center for Biometrics and Security Research,
  14. 14.
    University of Bath Iris Image Database,
  15. 15.
    Bolle, R., Pankanti, S.: Biometrics, Personal Identification in Networked Society. Kluwer Academic Publishers, Norwell (1998)Google Scholar
  16. 16.
    Jain, A.K., Maltoni, D.: Handbook of Fingerprint Recognition. Springer, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hunny Mehrotra
    • 1
  • Badrinath G. Srinivas
    • 2
  • Banshidhar Majhi
    • 1
  • Phalguni Gupta
    • 2
  1. 1.National Institute of Technology RourkelaOrissaIndia
  2. 2.Indian Institute of Technology KanpurIndia

Personalised recommendations