New Robust Fuzzy C-Means Based Gaussian Function in Classifying Brain Tissue Regions

  • S. R. Kannan
  • A. Sathya
  • S. Ramathilagam
  • R. Pandiyarajan
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)

Abstract

This paper introduces a new fuzzy c-mean objective function called Kernel induced Fuzzy C-Means based Gaussian Function for the purpose of segmentation of brain medical images. It obtains effective methods for calculating memberships and updating prototypes by minimizing the new objective function of Gaussian based fuzzy c-means. The performance of proposed algorithm has been tested with synthetic image and then it has been implemented for segmenting the brain [18] medical images to reduce the inhomogeneities and to allow the labeling of a pixel (voxel) to be influenced by the labels in its immediate neighborhood. Also this paper compares the results of proposed method with the results of existing basic Fuzzy C-Means.

Keywords

Fuzzy C-Means Clustering Kernel Function Gaussian Function Image Segmentation MR Imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. on Medical Imaging 21, 193–199 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    Al-Sultan, K.S., Selim, S.Z.: A Global Algorithm for the Fuzzy Clustering Problem. Pattern Recognition 26(9), 1357–1361 (1993)CrossRefGoogle Scholar
  3. 3.
    Al-Sultan, K.S., Fedjki, C.A.: A Tabu Search-based Algorithm for the Fuzzy Clustering Problem. Pattern Recognition 30(12), 2023–2030 (1997)CrossRefGoogle Scholar
  4. 4.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefGoogle Scholar
  5. 5.
    Bezdek, J.C., Pal, S.K. (eds.): Fuzzy Models for Pattern Recognition. IEEE Press, New York (1992)Google Scholar
  6. 6.
    Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048 (1993)CrossRefPubMedGoogle Scholar
  7. 7.
    Brand, M.E., Bohan, T.P., Kramer, L.A.: Estimation of CSF and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. Comput. Med. Imaging Graph. 18, 25–34 (1994)CrossRefGoogle Scholar
  8. 8.
    Carvalho, B.M., Gau, J.C., Herman, G.T., Kong, Y.: Algorithms for Fuzzy Segmentation. Pattern Analysis & Applications 2(1), 73–81 (1999)CrossRefGoogle Scholar
  9. 9.
    Clark, M.C., Hall, L.O., Goldgof, D.B., Velthuizen, R., Murtagh, F.R., Silbiger, M.S.: Automatic tumor-segmentation using knowledge-based techniques. IEEE Transactions on Medical Imaging 117, 187–201 (1998)CrossRefGoogle Scholar
  10. 10.
    Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)CrossRefGoogle Scholar
  11. 11.
    Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., Murtagh, F.R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artifical Intelligence in Medicine 21, 43–63 (2001)CrossRefGoogle Scholar
  12. 12.
    Gering, D.T., Grimson, W.E.L., Kikinis, R.: Recognizing deviations from normalcy for brain tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 388–395. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., Bezdek, J.C.: A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting Magnetic Resonance Images of the Brain. IEEE Trans. Neural Networks. 3(5), 672–682 (1992)CrossRefPubMedGoogle Scholar
  14. 14.
    Xue, J.-H., Pizurica, A., Philips, W., Kerre, E., Walle, R.V., Lemahieu, I.: An Integrated Method of Adaptive Enhancement for Unsupervised Segmentation of MRI Brain Images. Pattern Recognition Letters 24(15), 2549–2560 (2003)CrossRefGoogle Scholar
  15. 15.
    Krishnan, N., Nelson Kennedy Babu, C.V., Joseph Rajapandian, V., Richard Devaraj, N.: A Fuzzy Image Segmentation using Feedforward Neural Networks with Supervised Learning. In: Proceedings of the International Conference on Cognition and Recognition, pp. 396–402Google Scholar
  16. 16.
    Kwon, M.J., Han, Y.J., Shin, I.H., Park, H.W.: Hierarchical fuzzy segmentation of brain MR images. Int. J. Imaging Systems and Technology. 13, 115–125 (2003)CrossRefGoogle Scholar
  17. 17.
    Li, X., Li, L., Lu, H., Chen, D., Liang, Z.: Inhomogeneity correction for magnetic resonance images with fuzzy C-mean algorithm. In: Proc. SPIE, vol. 5032, pp. 995–1005 (2003)Google Scholar
  18. 18.
    Li, C.L., Goldgof, D.B., Hall, L.O.: Knowledge-based classification and tissue labeling of MR images of human brain. IEEE Trans. Med. Imag. 12(4), 740–750 (1993)CrossRefGoogle Scholar
  19. 19.
    Liew, A.W.C., Leung, S.H., Lau, W.H.: Fuzzy image clustering incorporating spatial continuity. IEE Proc. Visual Image Signal Process. 147, 185–192 (2000)CrossRefGoogle Scholar
  20. 20.
    Clark, M.C., Hall, L.O., Goldgof, D.B., Clarke, L.P., Velthuizen, R.P., Silbigger, M.S.: MRI Segmentation using fuzzy clustering Techniques. IEEE Engineering in Medicine and Biology 13(5), 730–742 (1994)CrossRefGoogle Scholar
  21. 21.
    Moussaoui, A., Benmahammed, K., Ferahta, N., Chen, V.: A New MR Brain Image Segmentation Using an Optimal Semisupervised Fuzzy C-means and pdf Estimation. Electronic Letters on Computer Vision and Image Analysis 5(4), 1–11 (2005)Google Scholar
  22. 22.
    Noordam, J.C., van den Broek, W.H.A.M., Buydens, L.M.C.: Geometrically guided fuzzy C-means clustering for multivariate image segmentation. In: Proc. Int. Conf. on Pattern Recognition, vol. 1, pp. 462–465 (2000)Google Scholar
  23. 23.
    Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Medical Imaging. 18, 737–752 (1999)CrossRefPubMedGoogle Scholar
  24. 24.
    Runkler, T.A., Bezdek, J.C.: Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. on Fuzzy Systems. 7(4), 377–393 (1999)CrossRefGoogle Scholar
  25. 25.
    Ruspini, E.H.: A New Approach to Clustering. Information and Control 15(1), 22–32 (1969)CrossRefGoogle Scholar
  26. 26.
    Ruspini, E.H.: Numerical methods for fuzzy clustering. Inform. Sci. 2, 319–350 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. R. Kannan
    • 1
    • 2
  • A. Sathya
    • 2
  • S. Ramathilagam
    • 1
  • R. Pandiyarajan
    • 2
  1. 1.National Cheng Kung UniversityTaiwan
  2. 2.Gandhigram Rural UniversityIndia

Personalised recommendations