A Modified Differential Evolution Algorithm with Cauchy Mutation for Global Optimization

  • Musrrat Ali
  • Millie Pant
  • Ved Pal Singh
Part of the Communications in Computer and Information Science book series (CCIS, volume 40)

Abstract

Differential Evolution (DE) is a powerful yet simple evolutionary algorithm for optimization of real valued, multi modal functions. DE is generally considered as a reliable, accurate and robust optimization technique. However, the algorithm suffers from premature convergence, slow convergence rate and large computational time for optimizing the computationally expensive objective functions. Therefore, an attempt to speed up DE is considered necessary. This research introduces a modified differential evolution (MDE), a modification to DE that enhances the convergence rate without compromising with the solution quality. In Modified differential evolution (MDE) algorithm, if an individual fails in continuation to improve its performance to a specified number of times then new point is generated using Cauchy mutation. MDE on a test bed of functions is compared with original DE. It is found that MDE requires less computational effort to locate global optimal solution.

Keywords

Differential evolution Cauchy mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Storn, R., Price, K.: DE-a simple and efficient adaptive scheme for global optimization over continuous space, Technical Report TR-95-012, ICSI (March 1995), ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z
  2. 2.
    Paterlini, S., Krink, T.: High performance clustering with differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 2004–2011 (2004)Google Scholar
  3. 3.
    Omran, M., Engelbrecht, A., Salman, A.: Differential evolution methods for unsupervised image classification. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 966–973 (2005a)Google Scholar
  4. 4.
    Storn, R.: Differential evolution design for an IIR-filter with requirements for magnitude and group delay. Technical Report TR-95-026, International Computer Science Institute, Berkeley, CA (1995)Google Scholar
  5. 5.
    Vesterstroem, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. Proc. Congr. Evol. Comput. 2, 1980–1987 (2004)Google Scholar
  6. 6.
    Andre, J., Siarry, P., Dognon, T.: An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization. Advance in Engineering Software 32, 49–60 (2001)CrossRefGoogle Scholar
  7. 7.
    Hrstka, O., Ku˘cerová, A.: Improvement of real coded genetic algorithm based on differential operators preventing premature convergence. Advance in Engineering Software 35, 237–246 (2004)CrossRefGoogle Scholar
  8. 8.
    Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: Ošmera, P. (ed.) Proc. of MENDEL 2000, 6th International Mendel Conference on Soft Computing, pp. 76–83 (2000)Google Scholar
  9. 9.
    Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: Matousek, D., Osmera, P. (eds.) Proc. of MENDEL 2003, 9th International Conference on Soft Computing, Brno, Czech Republic, pp. 41–46 (2003)Google Scholar
  10. 10.
    Abbass, H.: The self-adaptive pareto differential evolution algorithm. In: Proc. of the 2002 Congress on Evolutionary Computation, pp. 831–836 (2002)Google Scholar
  11. 11.
    Omran, M., Salman, A., Engelbrecht, A.P.: Self-adaptive differential evolution. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 192–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Brest, J., Greiner, S., Boškovic, B., Mernik, M., Žumer, V.: Self-adapting Control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)CrossRefGoogle Scholar
  13. 13.
    Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution. IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)CrossRefGoogle Scholar
  14. 14.
    Chakraborty, U.K. (ed.): Advances in Differential Evolution. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Price, K.: An introduction to DE. In: Corne, D., Marco, D., Glover, F. (eds.) New Ideas in Optimization, pp. 78–108. McGraw-Hill, London (1999)Google Scholar
  16. 16.
    Stacey, A., Jancie, M., Grundy, I.: Particle swarm optimization with mutation. In: Proceeding of IEEE congress on evolutionary computation, pp. 1425–1430 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Musrrat Ali
    • 1
  • Millie Pant
    • 1
  • Ved Pal Singh
    • 1
  1. 1.Department of Paper TechnologyIndian Institute of Technology RoorkeeSaharanpurIndia

Personalised recommendations