Advertisement

A New AFM-Based Lithography Method: Thermochemical Nanolithography

  • Debin WangEmail author
  • Robert Szoszkiewicz
  • Vamsi Kodali
  • Jennifer Curtis
  • Seth Marder
  • Elisa Riedo
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

In the last decade, there has been a tremendous increase in the number of techniques for patterning materials on the nanoscale (10-100nm), driven by numerous potential applications, for example, in sensing[1], data storage [2], optoelectronic [3], display [4], nanofluidic [5], and biomimetic [6] devices. An ideal nanolithography technique would be able to: (1) write with nm resolution; (2) write with speeds of multiple centimeters per second (while preserving nanometer scale registry) for wafer-scale lithography; (2) impart different chemical functionality and/or physical properties (with or without topographical changes) as desired; (4) function in different laboratory environments (for example, under ambient pressure or in solution); (5) be capable of massive parallelization for both writing and metrology; and (6) write on a variety of materials deposited on a variety of substrates. Specific applications will require one or more of the attributes described earlier, but the most versatile technique would encompass as many as possible. To our knowledge, no technique currently in practice can simultaneously attain all of these features.

Key words

Atomic force microscopy Nanolithography Proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.H. Wang et al., Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. USA 103, 2026–2031 (2006)CrossRefPubMedADSGoogle Scholar
  2. 2.
    P. Vettiger et al., The “Millipede” - More than one thousand tips for future AFM data storage. Ibm. J. Res. Dev. 44, 323–340 (2000)CrossRefGoogle Scholar
  3. 3.
    J. Wang,, X.Y. Sun, L. Chen, L. Zhuang, S.Y. Chou, Molecular alignment in submicron patterned polymer matrix using nanoimprint lithography. Appl. Phys. Lett. 77, 166–168 (2000)CrossRefADSGoogle Scholar
  4. 4.
    J.A. Rogers et al., Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. USA 98, 4835–4840 (2001)CrossRefPubMedADSGoogle Scholar
  5. 5.
    D. Mijatovic, J.C.T. Eijkel, A. van den Berg, Nanofluidic methods review. Lab Chip 5, 492–500 (2005)CrossRefGoogle Scholar
  6. 6.
    K.H. Jeong, J. Kim, L.P. Lee, Biologically inspired artificial compound eyes. Science 312, 557–561 (2006)Google Scholar
  7. 7.
    S.F. Lyuksyutov et al., Electrostatic nanolithography in polymers using atomic force microscopy. Nat. Mater. 2, 468–472 (2003)CrossRefPubMedADSGoogle Scholar
  8. 8.
    S. Matsui, Nanostructure fabrication using electron beam and its application to nanometer devices. Proc. IEEE. 85, 629–643 (1997)CrossRefGoogle Scholar
  9. 9.
    M. Park, C. Harrison, P.M. Chaikin, R.A. Register, D.H. Adamson, Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276, 1401–1404 (1997)CrossRefGoogle Scholar
  10. 10.
    Y.N. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)CrossRefADSGoogle Scholar
  11. 11.
    A.A. Tseng, A. Notargiacomo, T.P. Chen, Nanofabrication by scanning probe microscope lithography: A review. J. Vacuum Sci. Technol. B 23, 877–894 (2005)CrossRefGoogle Scholar
  12. 12.
    S.Q. Sun, K.S.L. Chong, G.J. Leggett, Photopatterning of self-assembled. monolayers at 244 nm and applications to the fabrication of functional microstructures and nanostructures. Nanotechnology 16, 1798–1808 (2005)Google Scholar
  13. 13.
    W.T. Muller, et al., A strategy for the chemical synthesis of nanostructures. Science 268, 272–273 (1995)CrossRefPubMedADSGoogle Scholar
  14. 14.
    M. Peter, X.M. Li, J. Huskens, D.N. Reinhoudt, Catalytic probe lithography: Catalyst-functionalized scanning probes as nanopens for nanofabrication on self-assembled monolayers. J. Amer. Chem. Soc. 126, 11684–11690 (2004)CrossRefGoogle Scholar
  15. 15.
    R.M. Nyffenegger, R.M. Penner, Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991. Chem. Rev. 97, 1195–1230 (1997)CrossRefPubMedGoogle Scholar
  16. 16.
    P. Samori, Scanning Probe Microscopies Beyond Imaging (Wiley-VCH, Weinheim, 2006)CrossRefGoogle Scholar
  17. 17.
    M.P. Stoykovich et al., Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005)CrossRefPubMedADSGoogle Scholar
  18. 18.
    S. Kramer, R.R. Fuierer, C.B. Gorman, Scanning probe lithography using self-assembled monolayers. Chem. Rev. 103, 4367–4418 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    S.Y. Jang, M. Marquez, G.A. Sotzing, Rapid direct nanowriting of conductive polymer via electrochemical oxidative nanolithography. J. Amer. Chem. Soc. 126, 9476–9477 (2004)CrossRefGoogle Scholar
  20. 20.
    U. Feldkamp, C.M. Niemeyer, Rational design of DNA nanoarchitectures. Angew. Chem. Int. Edit. 45, 1856–1876 (2006)CrossRefGoogle Scholar
  21. 21.
    D.S. Ginger, H. Zhang, C.A. Mirkin, The evolution of dip-pen nanolithography. Angew. Chem. Int. Edit. 43, 30–45 (2004)CrossRefGoogle Scholar
  22. 22.
    M. Su, Z.X. Pan, V.P. Dravid, T. Thundat, Locally enhanced relative humidity for scanning probe nanolithography. Langmuir 21, 10902–10906 (2005)CrossRefPubMedGoogle Scholar
  23. 23.
    D. Bullen et al., Design, fabrication, and characterization of thermally actuated probe Arrays for dip pen nanolithography. J. Microelectromech. Syst. 13, 594–602 (2004)CrossRefGoogle Scholar
  24. 24.
    D.S. Fryer, P.F. Nealey, J.J. de Pablo, Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness. Macromolecules 33, 6439–6447 (2000)CrossRefADSGoogle Scholar
  25. 25.
    W.P. King et al., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001)CrossRefADSGoogle Scholar
  26. 26.
    B. Gotsmann, U. Durig, Thermally activated nanowear modes of a polymer surface induced by a heated tip. Langmuir 20, 1495–1500 (2004)CrossRefPubMedGoogle Scholar
  27. 27.
    R. Szoszkiewicz et al., High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Lett. 7, 1064–1069 (2007)CrossRefPubMedADSGoogle Scholar
  28. 28.
    D. Wang et al., Local wettability modification by thermochemical nanolithography with write-read-overwrite capability. Appl. Phys. Lett. 91, 3 (2007)Google Scholar
  29. 29.
    D. Wang et al., Reversible nanoscale local wettability modifications by thermochemical nanolithography, Mater. Res. Soc. Symp. Proc. 1059, KK10-36 (2008)Google Scholar
  30. 30.
    R.W. Carpick, M. Salmeron, Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)CrossRefPubMedGoogle Scholar
  31. 31.
    R. Szoszkiewicz, E. Riedo, Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 87, 033105 (2005)CrossRefADSGoogle Scholar
  32. 32.
    R. Szoszkiewicz, A.J. Kulik, G. Gremaud, M. Lekka, Probing local water contents of in vitro protein films by ultrasonic force microscopy. Appl. Phys. Lett. 86, 123901 (2005)CrossRefADSGoogle Scholar
  33. 33.
    S.M. Morgenthaler, S. Lee, N.D. Spencer, Submicrometer structure of surface-chemical gradients prepared by a two-step immersion method. Langmuir 22, 2706–2711 (2006)CrossRefPubMedGoogle Scholar
  34. 34.
    P.E. Sheehan, L.J. Whitman, Thiol diffusion and the role of humidity in “dip pen nanolithography”. Phys. Rev. Lett. 88, 156104 (2002)CrossRefPubMedADSGoogle Scholar
  35. 35.
    E.A. Grulke, A. Abe, D.R. Bloch, Polymer Handbook. (Wiley, New York, 2003)Google Scholar
  36. 36.
    D. Wang et al., Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects, Adv. Funct. Mater. in press (2009)Google Scholar
  37. 37.
    R. Garcia, R.V. Martinez, J. Martinez, Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev. 35, 29–38 (2006)CrossRefPubMedGoogle Scholar
  38. 38.
    X.N. Xie, H.J. Chung, C.H. Sow, A.T.S. Wee, Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mater. Sci. Eng. R-Reports 54, 1–48 (2006)CrossRefGoogle Scholar
  39. 39.
    G.W. Gokel, Dean’s Handbook of Organic Chemistry (McGraw-Hill, New York, 2004)Google Scholar
  40. 40.
    R. Szoszkiewicz, E. Riedo, Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 87, 033105 (2005)CrossRefADSGoogle Scholar
  41. 41.
    G.T. Hermanson, Bioconjugate Techniques, 1st ed. (Academic, London, 1996)Google Scholar
  42. 42.
    W.P. King, K.E. Goodson, Thermomechanical formation of nanoscale polymer indents with a heated silicon tip. J. Heat Transfer-Trans. ASME 129, 1600–1604 (2007)CrossRefGoogle Scholar
  43. 43.
    Y. Hu, A. Das, M.H, Hecht, G. Scoles, Nanografting de novo proteins onto gold surfaces. Langmuir 21, 9103–9109 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Debin Wang
    • 1
    Email author
  • Robert Szoszkiewicz
    • 2
  • Vamsi Kodali
    • 1
  • Jennifer Curtis
    • 1
  • Seth Marder
    • 3
  • Elisa Riedo
    • 1
  1. 1.School of Physics Georgia Institute of TechnologyAtlantaUSA
  2. 2.Department of PhysicsKansas State UniversityManhattanUSA
  3. 3.School of Chemistry and Biochemistry Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations