Skip to main content

A New AFM-Based Lithography Method: Thermochemical Nanolithography

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In the last decade, there has been a tremendous increase in the number of techniques for patterning materials on the nanoscale (10-100nm), driven by numerous potential applications, for example, in sensing[1], data storage [2], optoelectronic [3], display [4], nanofluidic [5], and biomimetic [6] devices. An ideal nanolithography technique would be able to: (1) write with nm resolution; (2) write with speeds of multiple centimeters per second (while preserving nanometer scale registry) for wafer-scale lithography; (2) impart different chemical functionality and/or physical properties (with or without topographical changes) as desired; (4) function in different laboratory environments (for example, under ambient pressure or in solution); (5) be capable of massive parallelization for both writing and metrology; and (6) write on a variety of materials deposited on a variety of substrates. Specific applications will require one or more of the attributes described earlier, but the most versatile technique would encompass as many as possible. To our knowledge, no technique currently in practice can simultaneously attain all of these features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.H. Wang et al., Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. USA 103, 2026–2031 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. P. Vettiger et al., The “Millipede” - More than one thousand tips for future AFM data storage. Ibm. J. Res. Dev. 44, 323–340 (2000)

    Article  CAS  Google Scholar 

  3. J. Wang,, X.Y. Sun, L. Chen, L. Zhuang, S.Y. Chou, Molecular alignment in submicron patterned polymer matrix using nanoimprint lithography. Appl. Phys. Lett. 77, 166–168 (2000)

    Article  CAS  ADS  Google Scholar 

  4. J.A. Rogers et al., Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. USA 98, 4835–4840 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  5. D. Mijatovic, J.C.T. Eijkel, A. van den Berg, Nanofluidic methods review. Lab Chip 5, 492–500 (2005)

    Article  CAS  Google Scholar 

  6. K.H. Jeong, J. Kim, L.P. Lee, Biologically inspired artificial compound eyes. Science 312, 557–561 (2006)

    CAS  Google Scholar 

  7. S.F. Lyuksyutov et al., Electrostatic nanolithography in polymers using atomic force microscopy. Nat. Mater. 2, 468–472 (2003)

    Article  CAS  PubMed  ADS  Google Scholar 

  8. S. Matsui, Nanostructure fabrication using electron beam and its application to nanometer devices. Proc. IEEE. 85, 629–643 (1997)

    Article  CAS  Google Scholar 

  9. M. Park, C. Harrison, P.M. Chaikin, R.A. Register, D.H. Adamson, Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276, 1401–1404 (1997)

    Article  CAS  Google Scholar 

  10. Y.N. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  CAS  ADS  Google Scholar 

  11. A.A. Tseng, A. Notargiacomo, T.P. Chen, Nanofabrication by scanning probe microscope lithography: A review. J. Vacuum Sci. Technol. B 23, 877–894 (2005)

    Article  CAS  Google Scholar 

  12. S.Q. Sun, K.S.L. Chong, G.J. Leggett, Photopatterning of self-assembled. monolayers at 244 nm and applications to the fabrication of functional microstructures and nanostructures. Nanotechnology 16, 1798–1808 (2005)

    Google Scholar 

  13. W.T. Muller, et al., A strategy for the chemical synthesis of nanostructures. Science 268, 272–273 (1995)

    Article  PubMed  ADS  CAS  Google Scholar 

  14. M. Peter, X.M. Li, J. Huskens, D.N. Reinhoudt, Catalytic probe lithography: Catalyst-functionalized scanning probes as nanopens for nanofabrication on self-assembled monolayers. J. Amer. Chem. Soc. 126, 11684–11690 (2004)

    Article  CAS  Google Scholar 

  15. R.M. Nyffenegger, R.M. Penner, Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991. Chem. Rev. 97, 1195–1230 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. P. Samori, Scanning Probe Microscopies Beyond Imaging (Wiley-VCH, Weinheim, 2006)

    Book  Google Scholar 

  17. M.P. Stoykovich et al., Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. S. Kramer, R.R. Fuierer, C.B. Gorman, Scanning probe lithography using self-assembled monolayers. Chem. Rev. 103, 4367–4418 (2003)

    Article  PubMed  CAS  Google Scholar 

  19. S.Y. Jang, M. Marquez, G.A. Sotzing, Rapid direct nanowriting of conductive polymer via electrochemical oxidative nanolithography. J. Amer. Chem. Soc. 126, 9476–9477 (2004)

    Article  CAS  Google Scholar 

  20. U. Feldkamp, C.M. Niemeyer, Rational design of DNA nanoarchitectures. Angew. Chem. Int. Edit. 45, 1856–1876 (2006)

    Article  CAS  Google Scholar 

  21. D.S. Ginger, H. Zhang, C.A. Mirkin, The evolution of dip-pen nanolithography. Angew. Chem. Int. Edit. 43, 30–45 (2004)

    Article  CAS  Google Scholar 

  22. M. Su, Z.X. Pan, V.P. Dravid, T. Thundat, Locally enhanced relative humidity for scanning probe nanolithography. Langmuir 21, 10902–10906 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. D. Bullen et al., Design, fabrication, and characterization of thermally actuated probe Arrays for dip pen nanolithography. J. Microelectromech. Syst. 13, 594–602 (2004)

    Article  CAS  Google Scholar 

  24. D.S. Fryer, P.F. Nealey, J.J. de Pablo, Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness. Macromolecules 33, 6439–6447 (2000)

    Article  CAS  ADS  Google Scholar 

  25. W.P. King et al., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001)

    Article  CAS  ADS  Google Scholar 

  26. B. Gotsmann, U. Durig, Thermally activated nanowear modes of a polymer surface induced by a heated tip. Langmuir 20, 1495–1500 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. R. Szoszkiewicz et al., High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Lett. 7, 1064–1069 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  28. D. Wang et al., Local wettability modification by thermochemical nanolithography with write-read-overwrite capability. Appl. Phys. Lett. 91, 3 (2007)

    Google Scholar 

  29. D. Wang et al., Reversible nanoscale local wettability modifications by thermochemical nanolithography, Mater. Res. Soc. Symp. Proc. 1059, KK10-36 (2008)

    Google Scholar 

  30. R.W. Carpick, M. Salmeron, Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. R. Szoszkiewicz, E. Riedo, Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 87, 033105 (2005)

    Article  ADS  CAS  Google Scholar 

  32. R. Szoszkiewicz, A.J. Kulik, G. Gremaud, M. Lekka, Probing local water contents of in vitro protein films by ultrasonic force microscopy. Appl. Phys. Lett. 86, 123901 (2005)

    Article  ADS  CAS  Google Scholar 

  33. S.M. Morgenthaler, S. Lee, N.D. Spencer, Submicrometer structure of surface-chemical gradients prepared by a two-step immersion method. Langmuir 22, 2706–2711 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. P.E. Sheehan, L.J. Whitman, Thiol diffusion and the role of humidity in “dip pen nanolithography”. Phys. Rev. Lett. 88, 156104 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  35. E.A. Grulke, A. Abe, D.R. Bloch, Polymer Handbook. (Wiley, New York, 2003)

    Google Scholar 

  36. D. Wang et al., Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects, Adv. Funct. Mater. in press (2009)

    Google Scholar 

  37. R. Garcia, R.V. Martinez, J. Martinez, Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev. 35, 29–38 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. X.N. Xie, H.J. Chung, C.H. Sow, A.T.S. Wee, Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mater. Sci. Eng. R-Reports 54, 1–48 (2006)

    Article  CAS  Google Scholar 

  39. G.W. Gokel, Dean’s Handbook of Organic Chemistry (McGraw-Hill, New York, 2004)

    Google Scholar 

  40. R. Szoszkiewicz, E. Riedo, Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 87, 033105 (2005)

    Article  ADS  CAS  Google Scholar 

  41. G.T. Hermanson, Bioconjugate Techniques, 1st ed. (Academic, London, 1996)

    Google Scholar 

  42. W.P. King, K.E. Goodson, Thermomechanical formation of nanoscale polymer indents with a heated silicon tip. J. Heat Transfer-Trans. ASME 129, 1600–1604 (2007)

    Article  CAS  Google Scholar 

  43. Y. Hu, A. Das, M.H, Hecht, G. Scoles, Nanografting de novo proteins onto gold surfaces. Langmuir 21, 9103–9109 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, D., Szoszkiewicz, R., Kodali, V., Curtis, J., Marder, S., Riedo, E. (2010). A New AFM-Based Lithography Method: Thermochemical Nanolithography. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03535-7_22

Download citation

Publish with us

Policies and ethics