Skip to main content

Contact Potential Difference Techniques as Probing Tools in Tribology and Surface Mapping

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Summary

Contact potential differences techniques have been adapted for continuous nondestructive monitoring of changes in the electron work function of a rubbing surface. The method can be used to investigate tribological materials for a wide range of conditions, including changes in load, sliding speed, and environment, with or without lubrication. It relies on the sensitivity of the work function to the various events, which accompany friction, for example, plastic deformation, creation of new surface of material, adsorption, oxidation, phase changes, and redistribution of alloy components. At present, this is the only method sensitive to both surface and near-surface defects and permits study of one of the two interacting surfaces during sliding. For metals and alloys, the thickness of a layer contributing to the electron work function measurement is equal to several atomic distances, that is, even traditional contact potential differences measurements is really related to nanoscale. Kelvin probe force microscopy allows to determine not only the surface topography as does atomic force microscopy, but in addition also delivers images of the surface work function on a nanometer scale. Modern contact potential differences techniques cover the range from macro/micro to nanoscales. The current paper focused on an in situ contact potential difference measurement during the sliding of materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lord Kelvin, Contact electricity of metals, Phil. Mag.46, 82–120 (1898).

    Google Scholar 

  2. J. Friedel, The physics of clean metal surfaces, Ann. phys. 1(6), 257–307 (1976).

    CAS  Google Scholar 

  3. G. Mahan, W.L. Schaich, Comment of the theory of work function, Phys. Rev. B10(6), 2647–2654 (1974).

    ADS  Google Scholar 

  4. S. Yamamoto, K. Susa, U. Kawabe, Work function of binary compounds, Japan J. Appl. Phis. 2, 209 (1974).

    Google Scholar 

  5. S.I. Pekar, O.F. Tomasevich, Thermionic emission from metals, covered by thick semiconductor layer, USSR J. Tech. Phys. 17(12), 1339–1342 (1947).

    Google Scholar 

  6. A.L. Zharin, Contact Potential Difference Technique and Its Application in Tribology, (Bestprint, Minsk, 1996) (in Russian).

    Google Scholar 

  7. N.V. Cherepnin, Sorption Phenomenon in Vacuum Technique, (Soviet Radio, Moscow, 1973), (in Russian).

    Google Scholar 

  8. A.A. Andreev, Ia. Polige, Work function change under cold deformation of molybdenum and tungsten in ultrahigh vacuum, Proc. USSR Acad. Sci. 152(5), 1986–1088 (1963) (in Russian).

    Google Scholar 

  9. P. Craig, Direct observation of stress - induced shifts in contact potentials, Phys. Rev. Let. 22 (1969) 14 700.

    Google Scholar 

  10. E.M. Gutman, Mechanochemistry of Metals and Corrosion Protection (Metallurgy, Moscow, 1974) (in Russian).

    Google Scholar 

  11. A.N. Latishev, M.I. Molotski, K.V. Chibisov, An interaction of the chemisorbed particles with dislocations, Proc. USSR Acad. Sci., 224(4), 880–882 (1975) (in Russian).

    Google Scholar 

  12. R.I. Mints, V.P. Melekchin, M.B. Partenski, Exoelectrons emission relation with work function in metals, USSR J. Metal Phys., 40(4), 886–889 (1975) (in Russian).

    Google Scholar 

  13. D. DeVecchio, B. Bhushan, Use of a nanoscale Kelvin probe for detecting wear precursors, Rev. Sci. Instrum. 69, 3618–3624 (1998).

    Article  CAS  ADS  Google Scholar 

  14. J.A. Chalmers, Contact potentials, Phil. Mag. 33, 399–430 (1942).

    CAS  Google Scholar 

  15. W.A. Zisman, A new method of measuring contact potential difference in metals, Rev. Sci. Instrum. 367–370 (1932).

    Google Scholar 

  16. H. Palevsky, R.K. Swank, R. Grenchik, Design of dynamic condenser electrometer, Rev. Sci. Instrum. 18, 297–314 (1947).

    Article  ADS  Google Scholar 

  17. R. Simon, Work function of iron surfaces produced by cleavage in vacuum, Phys. Rev. 116(3), 613–617 (1959).

    Article  CAS  ADS  Google Scholar 

  18. S. Danyluk, K. Hamall, L.A. Reid, A.L. Zharin, The non-vibrating capacitance probe for wear monitoring, (2007), US patent RE39,803 E.

    Google Scholar 

  19. E. Zanoria, K. Hamall, S. Danyluk, A.L. Zharin, Surface wear monitoring with a non-vibrating capacitance probe, J. KSTLE 11, 40–46 (1995).

    Google Scholar 

  20. E. Zanoria, K. Hamall, S. Danyluk, A.L. Zharin, The non-vibrating Kelvin probe and its application for monitoring surface wear, J. Test. Evaluation, JTEVA 25(2), 233–238 (1997).

    Google Scholar 

  21. E. Zanoria, S. Danyluk, C.S. Bhatia, A.L. Zharin, Kelvin probe measurements of wear of a magnetic hard disk, Adv. Inform. Storage Syst. 7, 181–191 (1996).

    Article  Google Scholar 

  22. T.J. Harvey, S. Morris, L. Wang, R.J.K. Wood, H.E.C. Powrie, Real-time monitoring of wear debris using electrostatic sensing techniques. Proc. IMechE Part J: Eng Tribol. 221 (2007).

    Google Scholar 

  23. Y. Martin, D.W. Abraham, H.K. Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy, Appl. Phys. Lett. 52, 1103–1105 (1988).

    Article  ADS  Google Scholar 

  24. M. Nonnenmacher, M.P. Oboyle, H.K. Wickramasinghe, Kelvin probe force microscopy, Appl. Phys. Lett. 58(25), 2921–2923 (1991).

    Article  ADS  Google Scholar 

  25. J. Lu et al., Surface potential studies of self-assembling monolayers using Kelvin probe force microscopy, Surf. Interface Anal. 27(5–6), 368–373 (1999).

    Article  CAS  Google Scholar 

  26. Y.L. Yousef, S. Mischriki, S. Aziz, Measurement of contact potential by electrostatic exitation of low-frequency vibration, J. Phys. E. 12, 873–875 (1965).

    Google Scholar 

  27. B. Bhushan, A.V. Goldade, Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear 244, 104–117 (2000).

    Article  CAS  Google Scholar 

  28. B. Bhushan, A.V. Goldade, Measurements and analysis of surface potential change during wear of single-crystal silicon at ultralow loads using Kelvin probe microscopy, Appl. Surf. Sci. 157, 373–381 (2000).

    Article  CAS  ADS  Google Scholar 

  29. B. Bhushan, Nanotribology and nanomechanics, Wear 259, 1507–1531 (2005).

    Article  CAS  Google Scholar 

  30. B. Bhushan, M. Palacio, B. Kinzig, AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films, J. Colloid. Interf. Sci., 317, 275–287 (2008).

    Article  CAS  Google Scholar 

  31. V.S. Fomenko, Handbook of Thermionic Properties (Plenum, New York, 1966).

    Google Scholar 

  32. W. Li, D.Y. Li, In situ measurements of simultaneous electronic behavior of Cu and Al induced by mechanical deformation. J. Appl. Phys. 99(7), 2005–2012 (2006).

    Article  CAS  Google Scholar 

  33. W. Li, M. Cai, Y. Wang, S.l. Yu, Influences of tensile strain and strain rate on the electron work function of metals and alloys. Scripta Materialia 54(5), 921–924 (2006).

    Google Scholar 

  34. A.L. Zharin, V.A. Genkin, E.I. Fishbein, N.A. Shipitsa, A.L. Terekhov, E. Barkun, Determination of contact deformation mode from the electron work function, Soviet J. Friction Wear 11, 144–146 (1990).

    Google Scholar 

  35. A.L. Zharin, E.I. Fishbein, N.A. Shipitsa, Effect of contact deformation upon surface electron work function, Soviet J. Friction Wear 16(3), 66–78 (1995).

    Google Scholar 

  36. Vishniakov Ia. D., Modern technique for investigation of deformed crystal structure, (Metallurgy Press, Moscow, 1975) (in Russian).

    Google Scholar 

  37. G.V. Dydko, Contact potential difference measurements by condenser technique, USSR J. Exp. Tech. 5, 128–130 (1961).

    Google Scholar 

  38. U.V. Nazarov, B. Postagonov, G.I. Geigopov, N.V. Domashka, The basis of nanotechnology, Russian Proc. Mashinconstruction 1, 29–31 (1990) (In Russian).

    Google Scholar 

  39. A.A. Markov, Electron work function changes during friction, in Electric phenomena during friction, cutting and lubrication of solids. (Nayka, Moscow, 1973) 28–34 (in Russian).

    Google Scholar 

  40. W. Li, D.I. Li, Exploring the application of the Kelvin method in studying the history prior to wear and the onset of wear”, Wear 253(7), 746–751 (2000).

    Article  Google Scholar 

  41. A.L. Zharin, G.P. Shpenkov, Device for Friction Pair Monitoring, (1978) USSR Patent no. 615379.

    Google Scholar 

  42. A.L. Zharin, G.P. Shpenkov, Macroscopic effects of delamination wear, Wear 56, 309–313 (1979).

    Article  Google Scholar 

  43. A.L. Zharin, Techniques of friction monitoring, Soviet J. Frict. Wear 14, (3) 111–120 (1993).

    Google Scholar 

  44. A.L. Zharin, D. Rigney, Application of the contact potential difference technique for on-line rubbing surface monitoring (review), Tribol. Lett. 4, 205–213 (1998).

    Article  CAS  Google Scholar 

  45. A.L. Zharin, V.A. Guenkin, Study of friction processes with reciprocating displacement, Soviet J. Frict. Wear 11, 128–131 (1990).

    Google Scholar 

  46. A.L. Zharin, Application Macro- and Micro Kelvin Probe in Tribological Studies In book: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, (Kluwer, Netherland, 2001) pp. 445–466.

    Google Scholar 

  47. A.L. Zharin, V.A. Genkin, E.I. Fishbein, N.A. Shipitsa, A.L. Terekhov, “Method for Run-in of Friction Assembly Materials, Soviet J. Frict. Wear 10, 530–534 (1989).

    Google Scholar 

  48. A.L. Zharin, V.A. Guenkin, On rubbing surface electron work function periodicity, Soviet J. Frict. Wear 2(1), 91–95 (1981).

    Google Scholar 

  49. T. Kasai, D. Rigney, A.L. Zharin, Changes detected by a non-contacting probe during sliding, Scipta Mater. 39, 561–567 (1998).

    CAS  Google Scholar 

  50. T. Kasai, X. Fu, D. Rigney, A.L. Zharin, Application of a non-contacting Kelvin probe during sliding, Wear 225–229, 1186 (1999).

    Article  Google Scholar 

  51. A. Alpas, H. Hu, J. Zhang, Plastic deformation and damage accumulation below the worn surface, Wear 162, 188–195 (1993).

    Article  Google Scholar 

  52. L.E. Samuels, E.D. Doyle, D.M. Turley, Fundamentals of Friction and Wear of Materials, ASM Materials Science Seminar, 13 (1980).

    Google Scholar 

  53. J. Hirt, I. Lote, Theory of Dislocations (Atomizdat, Moscow, 1972) (in Russian).

    Google Scholar 

  54. A.L. Zharin, N.A. Shipitsa, E.I. Fishbein, Some features of fatigue at sliding friction, Soviet J. Frict. Wear 14(4), 13–22 (1993).

    Google Scholar 

  55. A.L. Zharin, V.A. Guenkin, O.V. Roman, Connection of periodic changes of electron work function of a rubbing surface with fatigue damage, Soviet J. Frict. Wear 7(2), 112–120 (1986).

    Google Scholar 

  56. I.D. Baikie, P.J.S. Smith, D.M. Porterfield, P.J. Estrup, Multitip scanning bio-Kelvin probe. Rev. Sci. Instr. 70(3), 1842–1850 (1999).

    Article  CAS  ADS  Google Scholar 

  57. K. Wapner, B. Schoenberger, M. Stratmann, G. Grundmeier, Height-regulating scanning Kelvin probe for simultaneous measurement of surface topology and electrode potentials at buried polymer/metal interfaces. J. Electrochem. Soc. 152(3), E114–E122 (2005).

    Article  CAS  Google Scholar 

  58. H. Rivere, Work Function. Measurements and Results, in Solid State Surface Science 1, (Dekker, NY. 1969).

    Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the contributions of my colleagues Nicolay Shipitsa, Efim Fishbein, and Brendon Steele. I would like to thank Steve Danyluk and David Rigney for support and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Zharin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zharin, A. (2010). Contact Potential Difference Techniques as Probing Tools in Tribology and Surface Mapping. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03535-7_19

Download citation

Publish with us

Policies and ethics