Skip to main content

Dynamic Force Microscopy and Spectroscopy Using the Frequency-Modulation Technique in Air and Liquids

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology

Part of the book series: NanoScience and Technology ((NANO))

  • 2262 Accesses

Summary

The frequency-modulation (FM) mode was introduced in 1991 to increase the sensitivity of dynamic force microscopy in vacuum. However, it is also possible to use this technique in air and liquids which has several advantages compared with the conventional amplitude-modulation (AM) (“tapping”) mode. In this chapter, we review the fundamentals of the FM mode and analyze its basic theoretical background. Finally, we present experimental results obtained in air and liquids and compare them with the conventional AM technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986)

    Article  PubMed  ADS  Google Scholar 

  2. E.L. Florin, V.T. Moy, H.E. Gaub, Science 264, 415 (1994)

    Article  CAS  PubMed  ADS  Google Scholar 

  3. M. Rief, F. Oesterhelt, B. Heymann, H.E. Gaub, Science 275, 1295 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Martin, C.C. Williams, H.K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987)

    Article  CAS  ADS  Google Scholar 

  5. Q.D. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Surf. Sci. Lett. 290, L688 (1993)

    Article  CAS  Google Scholar 

  6. R. Giles, J.P. Cleveland, S. Manne, P.K. Hansma, B. Drake, P. Maivald, C. Boles, J. Gurley, V.B. Elings, Appl. Phys. Lett. 63, 617 (1993)

    Article  CAS  ADS  Google Scholar 

  7. C.A.J. Putman, K.O. Vanderwerf, B.G. Degrooth, N.F. Vanhulst, J. Greve, Appl. Phys. Lett. 64, 2454 (1994)

    Article  CAS  ADS  Google Scholar 

  8. P.K. Hansma, J.P. Cleveland, M. Radmacher, D.A. Walters, P.E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H.G. Hansma, C.B. Prater, J. Massie, L. Fukunaga, L. Gurley, V.B. Elings, Appl. Phys. Lett. 64, 1738 (1994)

    Article  CAS  ADS  Google Scholar 

  9. T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)

    Article  ADS  Google Scholar 

  10. H. Hölscher, B. Gotsmann, W. Allers, U.D. Schwarz, H. Fuchs, R. Wiesendanger, Phys. Rev. B 64, 075402 (2001)

    Article  ADS  CAS  Google Scholar 

  11. H. Hölscher, B. Gotsmann, W. Allers, U.D. Schwarz, H. Fuchs, R. Wiesendanger, Phys. Rev. Lett. 88, 019601 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  12. F.J. Giessibl, Science 267, 68 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Y. Sugawara, M. Otha, H. Ueyama, S. Morita, Science 270, 1646 (1995)

    Article  CAS  ADS  Google Scholar 

  14. B. Gotsmann, B. Ancykowski, C. Seidel, H. Fuchs, Appl. Surf. Sci. 140, 314 (1999)

    Article  CAS  ADS  Google Scholar 

  15. H. Hölscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger, Phys. Rev. Lett. 83, 4780 (1999)

    Article  ADS  Google Scholar 

  16. U. Dürig, Appl. Phys. Lett. 75, 433 (1999)

    Article  ADS  Google Scholar 

  17. M.A. Lantz, H. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.J. Güntherodt, Science 291, 2580 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. H. Hölscher, Surf. Sci. 515, 517 (2002)

    Article  ADS  Google Scholar 

  19. A. Schirmeisen, D. Weiner, H. Fuchs, Phys. Rev. Lett. 97, 136101 (2006)

    Article  PubMed  ADS  CAS  Google Scholar 

  20. N.A. Burnham, R.J. Colton, J. Vac. Sci. Technol. A 7, 2906 (1989)

    Article  CAS  ADS  Google Scholar 

  21. F.J. Giessibl, Phys. Rev. B 1997, 16010 (1997)

    Article  ADS  Google Scholar 

  22. H. Hölscher, B. Anczykowski, Surf. Sci. 579, 21 (2005)

    Article  ADS  CAS  Google Scholar 

  23. A.A. Farell, T. Fukuma, T. Uchihashi, E.R. Kay, G. Bottari, D.A. Leigh, H. Yamada, S.P. Jarvis, Phys. Rev. B 72, 125430 (2005)

    Article  ADS  CAS  Google Scholar 

  24. T. Uchihashi, M.J. Higgins, S. Yasuda, S.P. Jarvis, S. Akita, Y. Nakayama, J.E. Sader, Appl. Phys. Lett. 85, 3575 (2004)

    Article  CAS  ADS  Google Scholar 

  25. G. Meyer, N.M. Amer, Appl. Phys. Lett. 53, 1045 (1988)

    Article  ADS  Google Scholar 

  26. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, J. Appl. Phys. 65, 164 (1988)

    Article  ADS  Google Scholar 

  27. D. Rugar, H.J. Mamin, P. Guethner, Appl. Phys. Lett. 55(25), 2588 (1989)

    Article  CAS  ADS  Google Scholar 

  28. C. Schönenberger, S.F. Alvarado, Rev. Sci. Instrum. 60, 3131 (1989)

    Article  ADS  Google Scholar 

  29. A. Moser, H.J. Hug, T. Jung, U.D. Schwarz, H.J. Güntherodt, Meas. Sci. Technol. 4, 769 (1993)

    Article  ADS  Google Scholar 

  30. S. Kitamura, M. Iwatsuki, Jpn. J. Appl. Phys. 34, L145 (1995)

    Article  CAS  ADS  Google Scholar 

  31. H. Ueyama, Y. Sugawara, S. Morita, Appl. Phys. A 66, S295 (1998)

    Article  CAS  ADS  Google Scholar 

  32. K. Kobayashi, H. Yamada, K. Matsushige, Appl. Surf. Sci. 188, 430 (2002)

    Article  CAS  ADS  Google Scholar 

  33. T. Okajima, H. Sekiguchi, H. Arakawa, A. Ikai, Appl. Surf. Sci. 210, 68 (2003)

    Article  CAS  ADS  Google Scholar 

  34. D. Ebeling, H. Hölscher, B. Anczykowski, Appl. Phys. Lett. 89, 203511 (2006)

    Article  ADS  CAS  Google Scholar 

  35. J.E. Schmutz, H. Hölscher, D. Ebeling, M.M. Schäfer, B. Anczykowski, Ultramicroscopy 107, 875 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. T. Fukuma, T. Ichii, K. Kobayashi, H. Yamadaa, K. Matsushige, Appl. Phys. Lett. 86, 034103 (2005)

    Article  ADS  CAS  Google Scholar 

  37. T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, Appl. Phys. Lett. 86, 193108 (2005)

    Article  ADS  CAS  Google Scholar 

  38. B.W. Hoogenboom, H.J. Hug, Y. Pellmont, S. Martin, P.L.T.M. Frederix, D. Fotiadis, A. Engel, Appl. Phys. Lett. 88, 193109 (2006)

    Article  ADS  CAS  Google Scholar 

  39. Y. Martin, H.K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987)

    Article  ADS  Google Scholar 

  40. H. Hölscher, B. Gotsmann, A. Schirmeisen, Phys. Rev. B 68, 153401 (2003)

    Article  ADS  CAS  Google Scholar 

  41. J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Appl. Phys. Lett. 72, 2613 (1998)

    Article  CAS  ADS  Google Scholar 

  42. T.R. Rodríguez, R. García, Appl. Phys. Lett 80, 1646 (2002)

    Article  ADS  CAS  Google Scholar 

  43. H. Hölscher, U.D. Schwarz, Int. J. Nonlinear Mech. 42, 608 (2007)

    Article  Google Scholar 

  44. U. Dürig, N. J. Phys. 2, 5.1 (2000)

    Google Scholar 

  45. J.E. Sader, T. Uchihashi, M.J. Higgins, A. Farrell, Y. Nakayama, S. Jarvis, Nanotechnology 16, S94 (2005)

    Article  CAS  ADS  Google Scholar 

  46. A.I. Livshitz, A.L. Shluger, A. Rohl, Appl. Surf. Sci 140, 327 (1999)

    Article  ADS  Google Scholar 

  47. H. Hölscher, A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger, Phys. Rev. B 61, 12678 (2000)

    Article  ADS  Google Scholar 

  48. U. Dürig, Appl. Phys. Lett. 76, 1203 (2000)

    Article  ADS  Google Scholar 

  49. F.J. Giessibl, Appl. Phys. Lett. 78, 123 (2001)

    Article  CAS  ADS  Google Scholar 

  50. O. Pfeiffer, Ph.D. thesis, University of Basel, Schwitzerland, 2004

    Google Scholar 

  51. J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)

    Article  CAS  ADS  Google Scholar 

  52. B. Gotsmann, B. Ancykowski, C. Seidel, H. Fuchs, Phys. Rev. B 60, 11051 (1999)

    Article  CAS  ADS  Google Scholar 

  53. J.E. Sader, I. Larson, P. Mulvaney, L.R. White, Rev. Sci. Instrum. 66, 3789 (1995)

    Article  CAS  ADS  Google Scholar 

  54. D. Ebeling, H. Hölscher, H. Fuchs, B. Anczykowski, U.D. Schwarz, Nanotechnology 17, S221 (2006)

    Article  CAS  ADS  Google Scholar 

  55. B. Anczykowski, D. Krüger, H. Fuchs, Phys. Rev. B 53, 15485 (1996)

    Article  CAS  ADS  Google Scholar 

  56. A. San Paulo, R. García, Phys. Rev. B 66, 041406 (2002)

    Article  ADS  CAS  Google Scholar 

  57. L.N. Kantorovich, T. Trevethan, Phys. Rev. Lett. 93, 236102 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  58. A. Schirmeisen, H. Hölscher, Phys. Rev. B 72, 045431 (2005)

    Article  ADS  CAS  Google Scholar 

  59. R. Hoffmann, A. Baratoff, H.J. Hug, H.R. Hidber, H.v. Löhneysen, H.J. Güntherodt, Nanotechnology 18, 395503 (2007)

    Google Scholar 

  60. E. Sackmann, Science 271, 43 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  61. M. Gleiche, L.F. Chi, H. Fuchs, Nature 403, 173 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  62. X. Chen, S. Lenhert, M. Hirtz, N. Lu, H. Fuchs, L. Chi, Acc. Chem. Res. 40, 393 (2007)

    Article  CAS  PubMed  Google Scholar 

  63. J. Domke, M. Radmacher, Langmuir 14, 3320 (1998)

    Article  CAS  Google Scholar 

  64. M. Rief, J.M. Fernandez, H.E. Gaub, Phys. Rev. Lett. 81, 4764 (1998)

    Article  CAS  ADS  Google Scholar 

  65. A. Janshoff, M. Neitzert, Y. Oberdörfer, H. Fuchs, Angew. Chem. Int. Ed. 39, 3212 (2002)

    Article  Google Scholar 

  66. P. Hinterdorfer, Y.F. Dufrene, Nature Methods 3, 347 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. J.E. Sader, J.W.M. Chon, P. Mulvaney, Rev. Sci. Instrum. 70(10), 3967 (1999)

    Article  CAS  ADS  Google Scholar 

  68. R.G. Haverkamp, A.T. Marshall, M.A.K. Williams, Phys. Rev. E 75, 021907 (2007)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank X. Chen and L. Chi for the preparation of the DPPC sample. Furthermore, we acknowledge support from and many useful discussions with André Schirmeisen, Harald Fuchs (University of Münster), and Filipp Oesterhelt (University of Düsseldorf). This work was supported by the BMBF Junior Researchers Competition Nanotechnology (Grant No. 03N8704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Hölscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hölscher, H., Ebeling, D., Schmutz, JE., Schäefer, M.M., Anczykowski, B. (2010). Dynamic Force Microscopy and Spectroscopy Using the Frequency-Modulation Technique in Air and Liquids. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03535-7_1

Download citation

Publish with us

Policies and ethics