Using Sensor Noise to Identify Low Resolution Compressed Videos from YouTube

  • Wiger van Houten
  • Zeno Geradts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5718)

Abstract

The Photo Response Non-Uniformity acts as a digital fingerprint that can be used to identify image sensors. This characteristic has been used in previous research to identify scanners, digital photo cameras and digital video cameras. In this paper we use a wavelet filter from Lukáš et al [1] to extract the PRNU patterns from multiply compressed low resolution video files originating from webcameras after they have been uploaded to YouTube. The video files were recorded with various resolutions, and the resulting video files were encoded with different codecs. Depending on video characteristics (e.g. codec quality settings, recording resolution), it is possible to correctly identify cameras based on these videos.

Keywords

Photo Response Non Uniformity Video Camera Identification Pattern Noise Digital Forensics YouTube Low resolution MSN Messenger Windows Live Messenger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lukáš, J., Fridrich, J., Goljan, M.: Digital Camera Identification from Sensor Pattern Noise. IEEE Trans. on Information Forensics and Security 1, 205–214 (2006)CrossRefGoogle Scholar
  2. 2.
    Geradts, Z., Bijhold, J., Kieft, M., Kurosawa, K., Kuroki, K., Saitoh, N.: Methods for Identification of Images Acquired with Digital Cameras. In: Proc. SPIE, vol. 4232 (2001)Google Scholar
  3. 3.
    Alles, E.J., Geradts, Z.J.M.H., Veenman, C.J.: Source Camera Identification for Low Resolution Heavily Compressed Images. In: Int. Conf on Computational Sciences and Its Applications, 2008. ICCSA 2008, pp. 557–567 (2008)Google Scholar
  4. 4.
    Chen, M., Fridrich, J., Goljan, M.: Digital Imaging Sensor Identification (Further Study). In: Proceedings of the SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65050P (2007)Google Scholar
  5. 5.
    Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Determining Image Origin and Integrity Using Sensor Noise. IEEE Trans. on Information Forensics and Security 3(1), 74–90 (2008)CrossRefGoogle Scholar
  6. 6.
    Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Scanner Identification Using Sensor Pattern Noise. In: Proc. SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65051K (2007)Google Scholar
  7. 7.
    Gou, H., Swaminathan, A., Wu, M.: Robust Scanner Identification Based on Noise Features. In: Proc. SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65050S (2007)Google Scholar
  8. 8.
    Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Source Digital Camcorder Identification using Sensor Photo Response Non-Uniformity. In: Proc. SPIE, vol. 6505 (2007)Google Scholar
  9. 9.
    Mihçak, M.K., Kozintsev, I., Ramchandran, K.: Spatially Adaptive Statistical Modeling of Wavelet Image Coefficients and its Application to Denoising. In: Proc. IEEE Int. Conf. Acoust. Speech, and Signal Proc., pp. 3253–3256 (1999)Google Scholar
  10. 10.
    Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. MM&Sec 2006. In: Proceedings of the Multimedia and Security Workshop 2006, Geneva, Switzerland, September 26-27, pp. 48–55 (2006)Google Scholar
  11. 11.
    Van, L.T., Emmanuel, S., Kankanhalli, M.S.: Identifying Source Cell Phone Using Chromatic Aberration. In: Proceedings of the 2007 IEEE International Conference on Multimedia and EXPO (ICME 2007), pp. 883–886 (2007)Google Scholar
  12. 12.
    Holst, G.C., Lomheim, T.S.: CMOS / CCD Sensors and Camera Systems. JCD Publishing and SPIE Press (2007)Google Scholar
  13. 13.
    Irie, K., McKinnon, A.E., Unsworth, K., Woodhead, I.M.: A Model for Measurement of Noise in CCD Digital-Video Cameras. Measurement Science and Technology 19, 45207 (2008)CrossRefGoogle Scholar
  14. 14.
    Loudon, R.: Quantum Theory of Light. Oxford University Press, Oxford (2001)MATHGoogle Scholar
  15. 15.
    Tian, H., Fowler, B.A., El Gamal, A.: Analysis of Temporal Noise in CMOS APS. In: Proc. SPIE Vol. 3649, Sensors, Cameras, and Systems for Scientific/Industrial Applications, pp. 177–185 (1999)Google Scholar
  16. 16.
    Salama, K., El Gamal, A.: Analysis of Active Pixel Sensor Readout Circuit. IEEE Trans. on Circuits and Systems I, 941–945 (2003)CrossRefGoogle Scholar
  17. 17.
    El Gamal, A., Fowler, B., Min, H., Liu, X.: Modeling and Estimation of FPN Components in CMOS Image Sensors. In: Morley, M.M. (ed.) Proc. SPIE, Solid State Sensor Arrays: Development and Applications II, vol. 3301, pp. 168–177 (1998)Google Scholar
  18. 18.
    Gloe, T., Kirchner, M., Winkler, A., Böhme, R.: Can We Trust Digital Image Forensics? In: Proc. of 15th International Conference on Multimedia, pp. 79–86 (2007)Google Scholar
  19. 19.
    Ferrero, A., Campos, J., Pons, A.: Correction of Photoresponse Nonuniformity for Matrix Detectors Based on Prior Compensation for Their Nonlinear Behavior. Applied Optics 45(11) (2006)Google Scholar
  20. 20.
    Bayram, S., Sencar, H.T., Memon, N., Avcıbaş, İ.: Source Camera Identification Based on CFA Interpolation. In: ICIP 2005, vol. 3, pp. 69–72 (2005)Google Scholar
  21. 21.
    Long, Y., Huang, Y.: Image Based Source Camera Identification using Demosaicking. In: IEEE 8th Workshop on Multimedia Signal Processing, October 3-6, pp. 419–424 (2006)Google Scholar
  22. 22.
    Donoho, D.L., Johnstone, I.M.: Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika 81, 425–455 (1994)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kaiser, G.: A Friendly Guide to Wavelets. Birkhauser Boston Inc, Basel (1994)MATHGoogle Scholar
  24. 24.
    Donoho, D., Maleki, A., Shahram, M.: WaveLab 850, http://www-stat.stanford.edu/~wavelab/
  25. 25.
    van der Mark, M., van Houten, W., Geradts, Z.: NFI PRNUCompare, http://prnucompare.sourceforge.net
  26. 26.
    FFmpeg, free program to convert audio and video, http://www.ffmpeg.org
  27. 27.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press (1999)Google Scholar
  28. 28.
    Chang, S.G., Yu, B., Vetterli, M.: Adaptive Wavelet Thresholding for Image Denoising and Compression. IEEE Trans. on Image Processing 9, 1532–1546 (2000)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Goljan, M., Fridrich, J., Filler, T.: Large Scale Test of Sensor Fingerprint Camera Identification. In: Proc. SPIE, Electronic Imaging, Security and Forensics of Multimedia Contents XI, San Jose, CA, January 18-22 (2009)Google Scholar
  30. 30.
    Bayram, S., Sencar, H.T., Memon, N.: Improvements on Source Camera-Model Identification Based on CFA Interpolation. In: Proc. WG 11.9 Intl. Conf. on Digital Forensics (2006)Google Scholar
  31. 31.
    Çeliktutan, O., Avcıbaş, İ., Sankur, B.: Blind Identification of Cellular Phone Cameras. In: Proceedings of the SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65051H (2007)Google Scholar
  32. 32.
    Virtualdub: A free AVI/MPEG-1 processing utility, http://www.virtualdub.org
  33. 33.
    MSN Webcam Recorder, http://ml20rc.msnfanatic.com/
  34. 34.
    Goljan, M., Fridrich, J.: Camera Identification from Cropped and Scaled Images. In: Proc. SPIE, Electronic Imaging, Forensics, Security, Steganography, and Watermarking of Multimedia Contents X, January 26-31, pp. OE-1–OE-13. San Jose (2008)Google Scholar
  35. 35.
    Çeliktutan, O., Sankur, B., Avcıbaş, İ.: Blind Identification of Source Cell-phone Model. IEEE Trans. on Information Forensics and Security 3, 553–566 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wiger van Houten
    • 1
  • Zeno Geradts
    • 1
  1. 1.Netherlands Forensic InstituteThe HagueThe Netherlands

Personalised recommendations