Monitoring Myocardial Dysfunction as Part of Sepsis Management

  • Olfa Hamzaoui
  • Jean-Louis TeboulEmail author


Sepsis-induced cardiac dysfunction occurs early in the course of severe sepsis. The mechanisms responsible for its development are complex and intricate. The degree of severity of septic myocardial depression is variable from patient to patient. Doppler echocardiography is the best method to make the diagnosis of cardiac dysfunction (a decrease in left ventricular ejection fraction). The transpulmonary thermodilution monitor (decrease in cardiac function index, decrease in cardiac output) and the pulmonary artery catheter (decrease in cardiac output and/or decrease in mixed venous oxygen saturation) can be used either to alert clinicians of the possibility of cardiac dysfunction or to monitor the effects of inotropic therapy. Low plasma levels of B-type natriuretic peptide levels can serve to rule out severe cardiac dysfunction. In contrast, high levels of natriuretic peptides do not allow diagnosing myocardial depression with certainty and should prompt the performance of echocardiographic examination. Administration of inotropic drugs, such as β1-agonist agents, is a matter of debate and should be carefully monitored in terms of efficacy as well as tolerance.


Left Ventricular Ejection Fraction Cardiac Dysfunction Pulmonary Artery Catheter Transpulmonary Thermodilution Pulse Contour Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Peak Doppler velocity of late diastolic flow


B-type natriuretic peptide


Cardiac function index


Cardiac troponin I


Cardiac troponin T


Peak Doppler velocity of early diastolic flow


Early diastolic mitral annular velocity


Global end-diastolic volume


Left ventricular ejection fraction


Nitric oxide


N terminal proBNP


Pulmonary artery catheter


Pulmonary artery occlusion pressure


Positive end-expiratory pressure


Central venous blood oxygen saturation


Mixed venous blood oxygen saturation


Velocity-time integral of aortic blood flow


  1. Abi-Gerges N, Tavernier B, Mebazaa A et al (1999) Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat. Am J Respir Crit Care Med 160:1196–1204PubMedGoogle Scholar
  2. Ammann P, Maggiorini M, Bertel O et al (2003) Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J Am Coll Cardiol 41:2004–2009PubMedCrossRefGoogle Scholar
  3. Brueckmann M, Huhle G, Lang S et al (2005) Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 112:527–534PubMedCrossRefGoogle Scholar
  4. Charpentier J, Luyt CE, Fulla Y (2004) Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med 32:660–665PubMedCrossRefGoogle Scholar
  5. Combes A, Berneau JB, Luyt CE et al (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30:1377–1383PubMedGoogle Scholar
  6. Cunnion RE, Schaer GL, Parker MM et al (1986) The coronary circulation in human septic shock. Circulation 73:637–644PubMedCrossRefGoogle Scholar
  7. Dahlström U (2004) Can natriuretic peptides be used for the diagnosis of diastolic heart failure? Eur J Heart Fail 6:281–287PubMedCrossRefGoogle Scholar
  8. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med 36:296–327PubMedCrossRefGoogle Scholar
  9. Dhainaut JF, Huyghebaert MF, Monsallier JF et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541PubMedCrossRefGoogle Scholar
  10. Ferdinandy P, Danial H, Ambrus I et al (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247PubMedGoogle Scholar
  11. Fernandes CJ Jr, Akamine N, Knobel E (1999) Cardiac troponin: a new serum marker of myocardial injury in sepsis. Intensive Care Med 25:1165–1168PubMedCrossRefGoogle Scholar
  12. Gardner RS, Ozalp F, Murday AJ et al (2003) N terminal pro-brain natriuretic peptide: a new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J 24:1735–1743PubMedCrossRefGoogle Scholar
  13. Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220PubMedCrossRefGoogle Scholar
  14. Iberti TJ, Fischer EP, Leibowitz AB (1990) A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA 264:2928–2932PubMedCrossRefGoogle Scholar
  15. Jabot J, Monnet X, Bouchra L et al. (2009) Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Crit Care Med 37:2913–8PubMedCrossRefGoogle Scholar
  16. Kumar A, Kumar A, Paladugu B et al (2007) Transforming growth factor-beta1 blocks in vitro cardiac myocyte depression induced by tumor necrosis factor-alpha, interleukin-1beta, and human septic shock serum. Crit Care Med 35:358–364PubMedCrossRefGoogle Scholar
  17. Kumar A, Schupp E, Bunnell E et al (2008) Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit Care 12:R35PubMedCrossRefGoogle Scholar
  18. Lamia B, Chemla D, Richard C et al (2005) Clinical review: interpretation of arterial pressure wave in shock states. Crit Care 9:601–606PubMedCrossRefGoogle Scholar
  19. Lancel S, Tissier S, Mordon S et al (2004) Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 43:2348–2358PubMedCrossRefGoogle Scholar
  20. Lancel S, Joulin O, Favory R et al (2005) Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111:2596–2604PubMedCrossRefGoogle Scholar
  21. Maeder M, Fehr T, Rickli H et al (2006) Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 129:1349–1366PubMedCrossRefGoogle Scholar
  22. McLean AS, Huang SJ, Hyams S et al (2007) Prognostic values of B-type natriuretic peptide in severe sepsis and septic shock. Crit Care Med 35:1019–1026PubMedCrossRefGoogle Scholar
  23. McLean AS, Huang SJ, Salter M (2008) Bench-to-bedside review: the value of cardiac biomarkers in the intensive care patient. Crit Care 12:215PubMedCrossRefGoogle Scholar
  24. Metha NJ, Khan IA, Gupta V et al (2004) Cardiac troponin predicts myocardial dysfunction and adverse outcome in septic shock. Int J Cardiol 95:13–17CrossRefGoogle Scholar
  25. Michard F, Alaya S, Zarka V et al (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908PubMedCrossRefGoogle Scholar
  26. Morelli A, De Castro S, Teboul JL et al (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31:638–644PubMedCrossRefGoogle Scholar
  27. Morita E, Yasue H, Yoshimura M et al (1993) Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 88:82–91PubMedGoogle Scholar
  28. Nagueh SF, Middleton KJ, Kopelen HA et al (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533PubMedCrossRefGoogle Scholar
  29. Parker MM, Shelhamer JH, Bacharach SL et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490PubMedGoogle Scholar
  30. Parrillo JE, Burch C, Shelhamer JH et al (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553PubMedCrossRefGoogle Scholar
  31. Pinsky M, Vincent JL, De Smet JM (1991) Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis 143:25–31PubMedGoogle Scholar
  32. Pirracchio R, Deye N, Lukaszewicz AC et al (2008) Impaired plasma B-type natriuretic peptide clearance in human septic shock. Crit Care Med 36:2542–2546PubMedCrossRefGoogle Scholar
  33. Pottecher T, Calvat S, Dupont H et al (2006) Hemodynamic management of severe sepsis: recommendations of the French Intensive Care’ Societies (SFAR/SRLF) Consensus Conference, 13 October 2005, Paris, France. Crit Care 10:311PubMedCrossRefGoogle Scholar
  34. Rabuel C, Mebazaa A (2006) Septic shock: a heart story since the 1960s. Intensive Care Med 32:799–807PubMedCrossRefGoogle Scholar
  35. Ritter S, Rudiger A, Maggiorini M (2009) Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study. Crit Care 13:R133PubMedCrossRefGoogle Scholar
  36. Roch A, Allardet-Servent J, Michelet P et al (2005) NH2 terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients. Crit Care Med 33:1001–1007PubMedCrossRefGoogle Scholar
  37. Silverman HJ, Penaranda R, Orens JB et al (1993) Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21:31–39PubMedCrossRefGoogle Scholar
  38. Spies C, Haude V, Fitzner R et al (1998) Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 113:1055–1063PubMedCrossRefGoogle Scholar
  39. Tavernier B, Li JM, El-Omar MM et al (2001) Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J 15:294–296PubMedGoogle Scholar
  40. Teboul JL, Pinsky MR, Mercat A et al (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636PubMedCrossRefGoogle Scholar
  41. Ueda S, Nishio K, Akai Y et al (2006) Prognostic value of increased plasma levels of brain natriuretic peptide in patients with septic shock. Shock 26:134–139PubMedCrossRefGoogle Scholar
  42. Vanoverschelde JL, Robert AR, Gerbaux A et al (1995) Noninvasive estimation of pulmonary artery wedge pressure with Doppler transmitral flow velocity pattern in patients with known heart disease. Am J Cardiol 75:383–389PubMedCrossRefGoogle Scholar
  43. Ver Elst KM, Spapen HD, Nguyen DN et al (2000) Cardiac troponin I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 46:650–657PubMedGoogle Scholar
  44. Vieillard-Baron A (2009) Assessment of right ventricular function. Curr Opin Crit Care 15:254–260PubMedCrossRefGoogle Scholar
  45. Vieillard-Baron A, Caille V, Charron C et al (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706PubMedCrossRefGoogle Scholar
  46. Wiener RS, Welch HG (2007) Trends in the use of the pulmonary artery catheter in the United States, 1993–2004. JAMA 298:423–429PubMedCrossRefGoogle Scholar
  47. Yoshimura M, Yasue H, Okumura K et al (1993) Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 87:464–469PubMedGoogle Scholar
  48. Yu CM, Sanderson JE, Shum IO (1996) Diastolic dysfunction and natriuretic peptides in systolic heart failure. Higher ANP and BNP levels are associated with the restrictive filling pattern. Eur Heart J 17:1694–1702PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Service de réanimation médicale, Hôpital Antoine Béclère, Assistance Publique–Hôpitaux de ParisUniversité Paris-Sud 11ClamartFrance
  2. 2.Service de réanimation médicaleCentre Hospitalier Universitaire de BicêtreParisFrance

Personalised recommendations