Advertisement

Pathogens in Severe Sepsis: New Paradigms for Gram-Positive Treatment

  • Lee P. Skrupky
  • Scott T. Micek
  • Marin H. KollefEmail author
Chapter

Abstract

Severe sepsis has become the preeminent infection within hospitals and intensive care units. Among the pathogens associated with severe sepsis, gram-positive bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA), have become the most common cause of healthcare-associated severe sepsis. MRSA is also an important cause of severe sepsis because it displays a remarkable array of resistance and virulence factors, which have contributed to its prominent role in infections of the critically ill. It is important that clinicians recognize the changing resistance patterns and epidemiology of MRSA, as well as other gram-positive pathogens, as these factors may impact patient outcomes. Given the paramount importance of MRSA as a nosocomial pathogen, we will focus this review on a discussion of MRSA and its treatment. When initiating empiric antibiotics, it is of vital importance that this therapy be timely and appropriate, as delays in treatment are associated with adverse outcomes. However, the use of older therapies for MRSA, such as vancomycin, has important limitations that will require a re-thinking as to the best approach for the treatment of MRSA infections. This will also require the recognition that therapies may have to vary depending on the type of MRSA infection the clinician is faced with (e.g., pneumonia, bacteremia, skin and skin structure).

Keywords

Soft Tissue Infection Nosocomial Pneumonia Skin Structure Infection Complicated Skin Ceftaroline Fosamil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Dr. Kollef’s effort was supported by the Barnes-Jewish Hospital Foundation.

References

  1. Albanese J, Leone M, Bruguerolle B et al (2000) Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother 44:1356–1358PubMedCrossRefGoogle Scholar
  2. American Thoracic Society (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416CrossRefGoogle Scholar
  3. Anthony KB, Fishman NO, Linkin DR et al (2008) Clinical and microbiological outcomes of serious infections with multidrug-resistant gram-negative organisms treated with tigecycline. Clin Infect Dis 46:567–570PubMedCrossRefGoogle Scholar
  4. Bozdogan B, Esel D, Whitener C et al (2003) Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. J Antimicrob Chemother 52:864–868PubMedCrossRefGoogle Scholar
  5. Chambers HF (1997) Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 10:781–791PubMedGoogle Scholar
  6. Chemaly RF, Hanmod SS, Jiang Y et al (2009) Tigecycline use in cancer patients with serious infections: a report on 110 cases from a single institution. Medicine 88:211–220PubMedCrossRefGoogle Scholar
  7. Cosgrove SE, Carmeli Y (2003) The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 36:1433–1437PubMedCrossRefGoogle Scholar
  8. Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34PubMedCrossRefGoogle Scholar
  9. Cruciani M, Gatti G, Lazzarini L et al (1996) Penetration of vancomycin into human lung tissue. J Antimicrob Chemother 38:865–869PubMedCrossRefGoogle Scholar
  10. Davis SL, Rybak MJ, Amjad M et al (2006) Characteristics of patients with healthcare-associated infection due to SCCmec type IV methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 27:1025–1031PubMedCrossRefGoogle Scholar
  11. DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474PubMedCrossRefGoogle Scholar
  12. Dumitrescu O, Badiou C, Bes M et al (2008) Effect of antibiotics, alone and in combination, on Panton–Valentine leukocidin production by a Staphylococcus aureus reference strain. Clin Microbiol Infect 14:384–388PubMedCrossRefGoogle Scholar
  13. FDA Issues Complete Response Letter For Iclaprim (2009) Med News Today. http://www.medicalnewstoday.com/articles/135981.php. Accessed 21 Mar 2010
  14. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3:948–958PubMedCrossRefGoogle Scholar
  15. Fowler VG Jr, Boucher HW, Corey GR et al (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665PubMedCrossRefGoogle Scholar
  16. Fridkin SK, Hageman JC, Morrison M et al (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352:1436–1444PubMedCrossRefGoogle Scholar
  17. Ge Y, Biek D, Talbot GH et al (2008) In vitro profiling of ceftaroline against a collection of recent bacterial clinical isolates from across the United States. Antimicrob Agents Chemother 52:3398–3407PubMedCrossRefGoogle Scholar
  18. Gillet Y, Etienne J, Lina G et al (2008) Association of necrotizing pneumonia with Panton-Valentine leukocidin-producing Staphylococcus aureus, regardless of methicillin resistance. Clin Infect Dis 47:985–986PubMedCrossRefGoogle Scholar
  19. Goldstein BP, Draghi DC, Sheehan DJ et al (2007) Bactericidal activity and resistance development profiling of dalbavancin. Antimicrob Agents Chemother 51:1150–1154PubMedCrossRefGoogle Scholar
  20. Hayden MK, Rezai K, Hayes RA et al (2005) Development of daptomycin resistance in vivo in methicillin resistant Staphylococcus aureus. J Clin Microbiol 43:5285–5287PubMedCrossRefGoogle Scholar
  21. Hidayat LK, Hsu DI, Quist R et al (2006) High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med 166:2138–2144PubMedCrossRefGoogle Scholar
  22. Jeffres MN, Isakow W, Doherty JA et al (2006) Predictors of mortality for methicillin-resistant Staphylococcus aureus health-care-associated pneumonia: specific evaluation of vancomycin pharmacokinetic indices. Chest 130:947–955PubMedCrossRefGoogle Scholar
  23. Jeffres MN, Isakow W, Doherty JA et al (2007) A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther 29:1107–1115PubMedCrossRefGoogle Scholar
  24. Kirby A, Mohandas K, Broughton C et al (2009) In vivo development of heterogeneous glycopeptide-intermediate Staphylococcus aureus (hGISA), GISA and daptomycin resistance in a patient with methicillin-resistant S. aureus endocarditis. J Med Microbiol 58:376–380PubMedCrossRefGoogle Scholar
  25. Klevens RM, Morrison MA, Nadle J et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771PubMedCrossRefGoogle Scholar
  26. Kollef MH, Sherman G, Ward S et al (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462–474PubMedCrossRefGoogle Scholar
  27. Kollef MH, Rello J, Cammarata SK et al (2004) Clinical cure and survival in gram-positive ventilator-associated pneumonia: retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Med 30:388–394PubMedCrossRefGoogle Scholar
  28. Labandeira-Rey M, Couzon F, Boisset S et al (2007) Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315:1130–1133PubMedCrossRefGoogle Scholar
  29. Lamer C, de Beco V, Soler P et al (1993) Analysis of vancomycin entry into pulmonary lining fluid by bronchoalveolar lavage in critically ill patients. Antimicrob Agents Chemother 37:281–286PubMedGoogle Scholar
  30. Laue H, Weiss L, Bernardi A et al (2007) In vitro activity of the novel diaminopyrimidine, iclaprim, in combination with folate inhibitors and other antimicrobials with different mechanisms of action. J Antimicrob Chemother 60:1391–1394PubMedCrossRefGoogle Scholar
  31. Leuthner KD, Cheung CM, Rybak MJ (2006) Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother 58:338–343PubMedCrossRefGoogle Scholar
  32. Li M, Diep BA, Villaruz AE et al (2009) Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 103:5883–5888CrossRefGoogle Scholar
  33. Liu C, Chambers HFL (2003) Staphylococcus aureus with heterogeneous resistance to vancomycin: epidemiology, clinical significance, and critical assessment of diagnostic methods. Antimicrob Agents Chemother 47:3040–3045PubMedCrossRefGoogle Scholar
  34. Lodise TP, Graves J, Evans A et al (2008a) Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 52:3315–3320PubMedCrossRefGoogle Scholar
  35. Lodise TP, Lomaestro B, Graves J et al (2008b) Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 52:1330–1336PubMedCrossRefGoogle Scholar
  36. Loughman JA, Fritz SA, Storch GA et al (2009) Virulence gene expression in human community-acquired Staphylococcus aureus infection. J Infect Dis 199:294–301PubMedCrossRefGoogle Scholar
  37. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532PubMedCrossRefGoogle Scholar
  38. Malbruny B, Canu A, Bozdogan B et al (2002) Resistance to quinupristin-dalfopristin due to mutation of L22 ribisomal protein in Staphylococcus aureus. Antimicrob Agents Chemother 46:2200–2207PubMedCrossRefGoogle Scholar
  39. McDougal LK, Steward CD, Killgore GE et al (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120PubMedCrossRefGoogle Scholar
  40. Mercier RC, Hrebickova L (2005) Oritavancin: a new avenue for resistant gram-positive bacteria. Expert Rev Anti Infect Ther 3:325–332PubMedCrossRefGoogle Scholar
  41. Mermel LA, Allon M, Bouza E et al (2009) Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45PubMedCrossRefGoogle Scholar
  42. Mohr JF, Murray BE (2007) Point: Vancomycin is not obsolete for the treatment of infection caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis 44:1536–1542PubMedCrossRefGoogle Scholar
  43. Moise PA, Smyth DS, El-Fawal N et al (2008) Microbiological effects of prior vancomycin use in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother 61:85–90PubMedCrossRefGoogle Scholar
  44. Morales G, Picazo JJ, Baos E et al (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50:821–825PubMedCrossRefGoogle Scholar
  45. Morrell M, Fraser VJ, Kollef MH (2005) Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 49:3640–3665PubMedCrossRefGoogle Scholar
  46. Naimi TS, LeDell KH, Como-Sabetti K et al (2003) Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976–2984PubMedCrossRefGoogle Scholar
  47. Noel GJ, Bush K, Bagchi P et al (2008a) A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin structure infections. Clin Infect Dis 46:647–655PubMedCrossRefGoogle Scholar
  48. Noel GJ, Strauss RS, Amsler K et al (2008b) Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob Agents Chemother 52:37–44PubMedCrossRefGoogle Scholar
  49. Noel GJ, Strauss RS, Shah A et al (2008) Ceftobiprole versus ceftazidime combined with linezolid for treatment of patients with nosocomial pneumonia (abstract). In: Proceedings of the 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy K:486Google Scholar
  50. Peeters MJ, Sarria JC (2005) Clinical characteristics of linezolid-resistant Staphylococcus aureus infections. Am J Med Sci 330:102–104PubMedCrossRefGoogle Scholar
  51. Pillai SK, Wennersten C, Venkataraman L et al (2009) Development of reduced vancomycin susceptibility in methicillin-susceptible Staphylococcus aureus. Clin Infect Dis 49:1169–1174PubMedCrossRefGoogle Scholar
  52. Popovich KJ, Weinstein RA, Hota B (2008) Are community-associated methicillin-resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin Infect Dis 46:787–794PubMedCrossRefGoogle Scholar
  53. Robert J, Bismuth R, Jarlier V (2006) Decreased susceptibility to glycopeptides in methicillin-resistant Staphylococcus aureus: a 20 year study in a large French teaching hospital, 1983–2002. J Antimicrob Chemother 57:506–510PubMedCrossRefGoogle Scholar
  54. Rodvold KA, Gotfried MH, Cwik M et al (2006) Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother 58:1221–1229PubMedCrossRefGoogle Scholar
  55. Rose WE, Rybak MJ (2006) Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy 26:1099–1110PubMedCrossRefGoogle Scholar
  56. Rybak M, Lomaestro B, Rotschafer JC et al (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66:82–98PubMedCrossRefGoogle Scholar
  57. Sakoulas G (2006) The accessory gene regulator (agr) in methicillin-resistant Staphylococcus aureus: role in virulence and reduced susceptibility to glycopeptide antibiotics. Drug Discov Today Dis Mech 3:287–294CrossRefGoogle Scholar
  58. Sakoulas G, Eliopoulos GM, Moellering RC Jr et al (2002) Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 46:1492–1502PubMedCrossRefGoogle Scholar
  59. Sakoulas G, Moellering RC Jr, Eliopoulos GM (2006) Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy. Clin Infect Dis 42(Suppl 1):S40–S50PubMedCrossRefGoogle Scholar
  60. Schneider P, Hawser S, Islam K (2003) Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg Med Chem Lett 13:4217–4721PubMedCrossRefGoogle Scholar
  61. Schramm GE, Johnson JA, Doherty JA et al (2006) Methicillin-resistant Staphylococcus aureus sterile-site infection: the importance of appropriate initial antimicrobial treatment. Crit Care Med 34:2069–2074PubMedCrossRefGoogle Scholar
  62. Schramm GE, Johnson JA, Doherty JA et al (2007) Increasing incidence of sterile-site infections due to non-multidrug-resistant, oxacillin-resistant Staphylococcus aureus among hospitalized patients. Infect Control Hosp Epidemiol 28:95–97PubMedCrossRefGoogle Scholar
  63. Seybold U, Kourbatova EV, Johnson JG et al (2006) Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis 42:647–656PubMedCrossRefGoogle Scholar
  64. Sharma M, Riederer K, Chase P et al (2008) High rate of decreasing daptomycin susceptibility during the treatment of persistent Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis 27:433–437PubMedCrossRefGoogle Scholar
  65. Shorr AF, Micek ST, Kollef MH (2008) Inappropriate therapy for methicillin-resistant Staphylococcus aureus: resource utilization and cost implications. Crit Care Med 36:2335–2340PubMedCrossRefGoogle Scholar
  66. Shurland S, Zhan M, Bradham DD et al (2007) Comparison of mortality risk associated with bacteremia due to methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Infect Control Hosp Epidemiol 28:273–279PubMedCrossRefGoogle Scholar
  67. Soriano A, Marco F, Martinez JA et al (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46:193–200PubMedCrossRefGoogle Scholar
  68. Steinkraus G, White R, Friedrich L (2007) Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001 to 05. J Antimicrob Chemother 60:788–794PubMedCrossRefGoogle Scholar
  69. Stevens DL, Ma Y, Salmi DB et al (2007) Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Infect Dis 195:202–211PubMedCrossRefGoogle Scholar
  70. Talbot GH, Thye D, Das A et al (2007) Phase 2 study of ceftaroline versus standard therapy in the treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother 51:3612–3616PubMedCrossRefGoogle Scholar
  71. Taylor JJ, Wilson JW, Estes LL et al (2006) Linezolid and serotonergic drug interactions: a retrospective survey. Clin Infect Dis 43:80–87Google Scholar
  72. Tenover FC, Lancaster MV, Hill BC et al (1998) Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J Clin Microbiol 36:1020–1027PubMedGoogle Scholar
  73. Theravance Announces Receipt of Additional FDA Communication Regarding Telavancin NDA for the Treatment of Nosocomial Pneumonia (2010) http://www.fiercebiotech.com/press-releases/-Theravance-Announces-Receipt-of-Additional-FDA-Communication-Regarding-Telavancin-NDA-tr. Accessed 21 Mar 2010
  74. Tsiodras S, Gold HS, Sakoulas G et al (2001) Linezolid resistance in a clinical isolate of Staphylococcus aureus (Letter). Lancet 358:207–208PubMedCrossRefGoogle Scholar
  75. Tsuji BT, Rybak MJ, Cheung CM et al (2007) Community- and health care-associated methicillin-resistant Staphylococcus aureus: a comparison of molecular epidemiology and antimicrobial activities of various agents. Diagn Microbiol Infect Dis 58:41–47PubMedCrossRefGoogle Scholar
  76. Vidaillac C, Rybak MJ (2009) Ceftobiprole: first cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Pharmacotherapy 29:511–525PubMedCrossRefGoogle Scholar
  77. Vikram HR, Havill NL, Koeth LM et al (2005) Clinical progression of methicillin-resistant Staphylococcus aureus vertebral osteomyelitis with reduced susceptibility to daptomycin. J Clin Microbiol 43:5384–5387PubMedCrossRefGoogle Scholar
  78. Wilcox MH, Tack KJ, Bouza E et al (2009) Complicated skin and skin-structure infections and catheter-related blood stream infections: noninferiority of linezolid in a phase 3 study. Clin Infect Dis 48:203–212PubMedCrossRefGoogle Scholar
  79. Wunderink RG, Rello J, Cammarata SK et al (2003) Linezolid vs. vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 124:1789–1797PubMedCrossRefGoogle Scholar
  80. Zhanel GG, Trapp S, Gin AS et al (2008) Dalbavancin and telavancin: novel lipoglycopeptides for the treatment of gram-positive infections. Expert Rev Anti Infect Ther 6:67–81PubMedCrossRefGoogle Scholar
  81. Zhang K, McClure J, Elsayed S et al (2009) Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class A mec and type 4 ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:531–540PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lee P. Skrupky
    • 1
    • 3
  • Scott T. Micek
    • 1
    • 4
  • Marin H. Kollef
    • 2
    Email author
  1. 1.Department of PharmacyBarnes-Jewish HospitalSt. LouisUSA
  2. 2.Division of Pulmonary and Critical Care MedicineWashington University School of MedicineSt. LouisUSA
  3. 3.Surgery, Trauma & Burn ICUBarnes-Jewish HospitalSt. LouisUSA
  4. 4.Medical ICUBarnes-Jewish HospitalSt. LouisUSA

Personalised recommendations