Acid Reflux and Oesophageal Cancer

  • Anna NicholsonEmail author
  • Janusz Jankowski
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 185)


Barrett’s metaplasia is one of the commonest premalignant lesions in the western world following colorectal adenomas. One in 50 of the adult population develops Barrett’s as a consequence of chronic gastro-oesophageal reflux. The mucosal inflammation seen within patients with gastro-oesophageal reflux seems likely to drive the growth of the metaplastic mucosa and also help direct further oncological change, yet the molecular events that characterize the pathway from inflammation to metaplasia to dysplasia and adenocarcinoma are poorly understood. There is hope that understanding the role of oesophageal inflammation will provide important insight into the development of Barrett's metaplasia and oesophageal cancer. This chapter will discuss the inflammation seen within context of Barrett’s oesophagus and also clinical trials which hope to address this common premalignant disease. There are several ongoing clinical trials which are aiming to provide data using anti-inflammatory therapies to tackle this important premalignant condition. There is new data presented which suggests that data from the aspirin esomeprazole chemoprevention trial (AspECT) may hold the clue to disease treatment and that the cytokine TNF-α seems to be a key signalling molecule in the metaplasia–dysplasia–carcinoma sequence. Specifically it appears that both epigenetic and inherited genetics cooperate to modulate the prognosis.


Barrett’s metaplasia Oesophageal adenocarcinoma Inflammation Non-steroid anti-inflammatories Proton pump inhibitors 


  1. Armstrong D (2008) Should patients with Barrett’s oesophagus be kept under surveillance? The case for. Best Pract Res Clin Gastroenterol 22(4):721–739PubMedCrossRefGoogle Scholar
  2. Atherfold PA, Jankowski JA (2006) Molecular biology of Barrett’s cancer. Best Pract Res Clin Gastroenterol 20(5):813–827PubMedCrossRefGoogle Scholar
  3. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545PubMedCrossRefGoogle Scholar
  4. Baron JA et al (2008) Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial. Lancet 372(9651):1756–1764PubMedCrossRefGoogle Scholar
  5. Barrett MT et al (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22(1):106–109PubMedCrossRefGoogle Scholar
  6. Barritt AS, Shaheen NJ (2008) Should patients with Barrett’s oesophagus be kept under surveillance? The case against. Best Pract Res Clin Gastroenterol 22(4):741–750PubMedCrossRefGoogle Scholar
  7. Benamouzig R et al (2001) APACC, a French prospective study on aspirin efficacy in reducing colorectal adenoma recurrence: design and baseline findings. Eur J Cancer Prev 10(4):327–335PubMedCrossRefGoogle Scholar
  8. Benamouzig R et al (2003) Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology 125(2):328–336PubMedCrossRefGoogle Scholar
  9. Bosetti C, Gallus S, La Vecchia C (2009) Aspirin and cancer risk: a summary review to 2007. Recent Results Cancer Res 181:231–251PubMedCrossRefGoogle Scholar
  10. Brown ER et al (2008) A clinical study assessing the tolerability and biological effects of infliximab, a TNF-alpha inhibitor, in patients with advanced cancer. Ann Oncol 19(7):1340–1346PubMedCrossRefGoogle Scholar
  11. Buskens CJ et al (2002) Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinoma of the esophagus. Gastroenterology 122(7):1800–1807PubMedCrossRefGoogle Scholar
  12. Cameron AJ et al (1990) Prevalence of columnar-lined (Barrett’s) esophagus. Comparison of population-based clinical and autopsy findings. Gastroenterology 99(4):918–922PubMedGoogle Scholar
  13. Chao DL et al (2008) Cell proliferation, cell cycle abnormalities, and cancer outcome in patients with Barrett’s esophagus: a long-term prospective study. Clin Cancer Res 14(21):6988–6995PubMedCrossRefGoogle Scholar
  14. Clemons NJ, McColl KE, Fitzgerald RC (2007) Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus carcinogenesis via distinct mechanisms. Gastroenterology 133(4):1198–1209PubMedCrossRefGoogle Scholar
  15. Cole BF et al (2009) Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomised trials. J Natl Cancer Inst 101(4):256–266PubMedCrossRefGoogle Scholar
  16. Corley DA et al (2003) Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. Gastroenterology 124(1):47–56PubMedCrossRefGoogle Scholar
  17. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867PubMedCrossRefGoogle Scholar
  18. Cuzick Jack, Otto Florian, Baron John A, Brown Powel H, Burn John, Greenwald Peter, Jankowski Janusz, Vecchia Carlo La, Meyskens Frank, Senn Hans Jörg, Thun Michael (2009) Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 10:501–507PubMedCrossRefGoogle Scholar
  19. Das D, Chilton AP, Jankowski JA (2009) Chemoprevention of oesophageal cancer and the AspECT trial. Recent Results Cancer Res 181:161–169PubMedCrossRefGoogle Scholar
  20. Dent J et al (2005) Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 54(5):710–717PubMedCrossRefGoogle Scholar
  21. Duggan SP et al (2010) An integrative genomic approach in oesophageal cells identifies TRB3 as a bile acid response gene, which regulates NF-kappaB activation and cytokine levels. Carcinogenesis 31(5): 936-945Google Scholar
  22. Dvorak HF (1986) tumours: wounds that do not heal Similarities between tumour stroma generation and wound healing. N Engl J Med 315(26):1650–1659PubMedCrossRefGoogle Scholar
  23. Eisen GM et al (1997) The relationship between gastroesophageal reflux disease and its complications with Barrett’s esophagus. Am J Gastroenterol 92(1):27–31PubMedGoogle Scholar
  24. Eksteen JA et al (2001) Inflammation promotes Barrett’s metaplasia and cancer: a unique role for TNFalpha. Eur J Cancer Prev 10(2):163–166PubMedCrossRefGoogle Scholar
  25. El-Omar EM et al (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404(6776):398–402PubMedCrossRefGoogle Scholar
  26. El-Serag H (2008) Role of obesity in GORD-related disorders. Gut 57(3):281–284PubMedCrossRefGoogle Scholar
  27. Fass R, Sifrim D (2009) Management of heartburn not responding to proton pump inhibitors. Gut 58(2):295–309PubMedCrossRefGoogle Scholar
  28. Figueiredo C et al (2002) Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst 94(22):1680–1687PubMedGoogle Scholar
  29. Fischbach LA et al (2001) Anti-inflammatory and tissue-protectant drug effects: results from a randomised placebo-controlled trial of gastritis patients at high risk for gastric cancer. Aliment Pharmacol Ther 15(6):831–841PubMedCrossRefGoogle Scholar
  30. Fitzgerald RC (2005) Genetics and prevention of oesophageal adenocarcinoma. Recent Results Cancer Res 166:35–46PubMedCrossRefGoogle Scholar
  31. Fitzgerald RC et al (2002a) Inflammatory gradient in Barrett’s oesophagus: implications for disease complications. Gut 51(3):316–322PubMedCrossRefGoogle Scholar
  32. Fitzgerald RC et al (2002b) Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut 50(4):451–459PubMedCrossRefGoogle Scholar
  33. Friedenberg FK et al (2008) The association between gastroesophageal reflux disease and obesity. Am J Gastroenterol 103(8):2111–2122PubMedCrossRefGoogle Scholar
  34. Fukata M, Abreu MT (2008) Role of toll-like receptors in gastrointestinal malignancies. Oncogene 27(2):234–243PubMedCrossRefGoogle Scholar
  35. Fullard M et al (2006) Systematic review: does gastro-oesophageal reflux disease progress? Aliment Pharmacol Ther 24(1):33–45PubMedCrossRefGoogle Scholar
  36. Harrison ML et al (2007) Tumour necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol 25(29):4542–4549PubMedCrossRefGoogle Scholar
  37. Heath EI et al (2003) Chemoprevention for Barrett’s esophagus trial. Design and outcome measures. Dis Esophagus 16(3):177–186PubMedCrossRefGoogle Scholar
  38. Heath EI et al (2007) Secondary chemoprevention of Barrett’s esophagus with celecoxib: results of a randomised trial. J Natl Cancer Inst 99(7):545–557PubMedCrossRefGoogle Scholar
  39. Hormi-Carver K et al (2009) Unlike esophageal squamous cells, Barrett’s epithelial cells resist apoptosis by activating the nuclear factor-kappa B pathway. Cancer Res 69(2):672–677PubMedCrossRefGoogle Scholar
  40. Jaiswal M, LaRusso NF, Gores GJ (2001) Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol 281(3):G626–G634PubMedGoogle Scholar
  41. Jankowski J, Barr H (2006) Improving surveillance for Barrett’s oesophagus: AspECT and BOSS trials provide an evidence base. Bmj 332(7556):1512PubMedCrossRefGoogle Scholar
  42. Jankowski JA, Hawk ET (2006) A methodologic analysis of chemoprevention and cancer prevention strategies for gastrointestinal cancer. Nat Clin Pract Gastroenterol Hepatol 3(2):101–111PubMedCrossRefGoogle Scholar
  43. Jankowski J, Hunt R (2008) Cyclooxygenase-2 inhibitors in colorectal cancer prevention; better the devil you know. Cancer Epidemiol Biomarkers Prev 17:1858–1861PubMedCrossRefGoogle Scholar
  44. Jankowski JA et al (1999) Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol 154(4):965–973PubMedCrossRefGoogle Scholar
  45. Jankowski JA et al (2000) Barrett’s metaplasia. Lancet 356(9247):2079–2085PubMedCrossRefGoogle Scholar
  46. Jemal A et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96PubMedCrossRefGoogle Scholar
  47. Kerkhof M et al (2007) Biomarkers for risk stratification of neoplastic progression in Barrett esophagus. Cell Oncol 29(6):507–517PubMedGoogle Scholar
  48. Kerr DJ et al (2007) Rofecoxib and cardiovascular adverse events in adjuvant treatment of colorectal cancer. N Engl J Med 357(4):360–369PubMedCrossRefGoogle Scholar
  49. Kim R et al (1997) Expression of p53, PCNA, and C-erbB-2 in Barrett’s metaplasia and adenocarcinoma. Dig Dis Sci 42(12):2453–2462PubMedCrossRefGoogle Scholar
  50. Koek GH et al (2008) Multivariate analysis of the association of acid and duodeno-gastro-oesophageal reflux exposure with the presence of oesophagitis, the severity of oesophagitis and Barrett’s oesophagus. Gut 57(8):1056–1064PubMedCrossRefGoogle Scholar
  51. Lagergren J (2005) Adenocarcinoma of oesophagus: what exactly is the size of the problem and who is at risk? Gut 54(Suppl 1):i1–i5PubMedCrossRefGoogle Scholar
  52. Logan RF et al (2008) Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology 134(1):29–38PubMedCrossRefGoogle Scholar
  53. Madhusudan S et al (2004) A phase II study of etanercept (Enbrel), a tumour necrosis factor alpha inhibitor in patients with metastatic breast cancer. Clin Cancer Res 10(19):6528–6534PubMedCrossRefGoogle Scholar
  54. Maley CC et al (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 64(10):3414–3427PubMedCrossRefGoogle Scholar
  55. Mathers JC et al (2003) Can resistant starch and/or aspirin prevent the development of colonic neoplasia? The Concerted Action Polyp Prevention (CAPP) 1 Study. Proc Nutr Soc 62(1):51–57PubMedCrossRefGoogle Scholar
  56. Moayyedi P, Jankowski JA (2010) Does long-term aspirin prevent cancer? BMJ 341Google Scholar
  57. Moons LM et al (2005) Barrett’s oesophagus is characterised by a predominantly humoral inflammatory response. J Pathol 207(3):269–276PubMedCrossRefGoogle Scholar
  58. Nandurkar S, Talley NJ (1999) Barrett’s esophagus: the long and the short of it. Am J Gastroenterol 94(1):30–40PubMedCrossRefGoogle Scholar
  59. Nguyen GH et al (2010) Inflammatory and microRNA gene expression as prognostic classifier of Barrett's-associated esophageal adenocarcinoma. Clin Cancer Res 16(23):5824–5834Google Scholar
  60. O’Riordan JM et al (2005) Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol 100(6):1257–1264PubMedCrossRefGoogle Scholar
  61. Oh DS et al (2007) Reduction of interleukin 8 gene expression in reflux esophagitis and Barrett’s esophagus with antireflux surgery. Arch Surg 142(6):554–559 (discussion 559–560)PubMedCrossRefGoogle Scholar
  62. Pendlebury S et al (2003) A trial of adjuvant therapy in colorectal cancer: the VICTOR trial. Clin Colorectal Cancer 3(1):58–60PubMedCrossRefGoogle Scholar
  63. Rothwell PM et al (2011) Effect of daily Aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377(9759):31–41PubMedCrossRefGoogle Scholar
  64. Saadi A et al (2009) Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. PNAS 107(5):2177–2182 Google Scholar
  65. Savarino V, Dulbecco P (2004) Optimizing symptom relief and preventing complications in adults with gastro-oesophageal reflux disease. Digestion 69(Suppl 1):9–16PubMedCrossRefGoogle Scholar
  66. Shaheen NJ (2005) Advances in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology 128(6):1554–1566PubMedCrossRefGoogle Scholar
  67. Shaheen NJ, Richter JE (2009) Barrett’s oesophagus. Lancet 373(9666):850–861PubMedCrossRefGoogle Scholar
  68. Tischoff I, Tannapfel A (2008) Barrett’s esophagus: can biomarkers predict progression to malignancy? Expert Rev Gastroenterol Hepatol 2(5):653–663PubMedCrossRefGoogle Scholar
  69. Tselepis C et al (2002) Tumour necrosis factor-alpha in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene 21(39):6071–6081PubMedCrossRefGoogle Scholar
  70. Vaughan TL et al (2005) Non-steroidal anti-inflammatory drugs and risk of neoplastic progression in Barrett’s oesophagus: a prospective study. Lancet Oncol 6(12):945–952PubMedCrossRefGoogle Scholar
  71. Wang Y et al (2008) Negative feedback regulation of IFN-gamma pathway by IFN regulatory factor 2 in esophageal cancers. Cancer Res 68(4):1136–1143PubMedCrossRefGoogle Scholar
  72. Weston AP et al (2001) p53 protein overexpression in low grade dysplasia (LGD) in Barrett’s esophagus: immunohistochemical marker predictive of progression. Am J Gastroenterol 96(5):1355–1362PubMedCrossRefGoogle Scholar
  73. Wilson KT et al (1998) Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 58(14):2929–2934PubMedGoogle Scholar
  74. Wong DJ et al (1997) p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res 57(13):2619–2622PubMedGoogle Scholar
  75. Wong DJ et al (2001) p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 61(22):8284–8289PubMedGoogle Scholar
  76. Wong NA et al (2005) CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci USA 102(21):7565–7570PubMedCrossRefGoogle Scholar
  77. Younes M et al (1997) p53 Protein accumulation is a specific marker of malignant potential in Barrett’s metaplasia. Dig Dis Sci 42(4):697–701PubMedCrossRefGoogle Scholar
  78. Younes M et al (2000) Decreased expression of Fas (CD95/APO1) associated with goblet cell metaplasia in Barrett’s esophagus. Hum Pathol 31(4):434–438PubMedCrossRefGoogle Scholar
  79. Zhang HY, Spechler SJ, Souza RF (2009) Esophageal adenocarcinoma arising in Barrett esophagus. Cancer Lett 275(2):170–177PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Velag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Centre for Digestive DiseaseBlizard Institute, Queen Mary University of LondonLondonUK
  2. 2.University of OxfordOxfordUK
  3. 3.Royal InfirmaryLeicesterUK

Personalised recommendations