Stem Cells and Inflammation in the Intestine

  • Adam Humphries
  • Trevor A. Graham
  • Stuart A. C. McDonaldEmail author
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 185)


Knowledge of stem cell biology in the intestine is increasing exponentially and it is one of the current hot topics ‘of the day’. Yet it is only recently that molecules such as Lgr5 and Bmi1 have been shown to reliably mark stem cells and have revealed the stem cell location throughout the murine gastrointestinal tract. However, there is a scarcity of meaningful work within their human counterpart. Nevertheless, recent studies have demonstrated the processes of niche succession, where one stem cell takes over the entire population of stem cells within a crypt; and monoclonal conversion, whereby the entire crypt becomes a clonal population of cells, are present in the human crypt. This work has also shown how crypts themselves divide and expand in the human colon.


Stem Cell Stem Cell Niche Intestinal Crypt Colonic Crypt Intestinal Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58:5489–5494PubMedGoogle Scholar
  2. Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R (1995) A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 270:8730–8738PubMedCrossRefGoogle Scholar
  3. Andoh A, Fujino S, Bamba S, Araki Y, Okuno T, Bamba T, Fujiyama Y (2002) IL-17 selectively down-regulates TNF-alpha-induced RANTES gene expression in human colonic subepithelial myofibroblasts. J Immunol 169:1683–1687PubMedGoogle Scholar
  4. Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, Fujiyama Y (2009) Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J Immunol 183(1):687–695 PubMedCrossRefGoogle Scholar
  5. Andreu P, Colnot S, Godard C, Gad S, Chafey P, Niwa-Kawakita M, Laurent-Puig P, Kahn A, Robine S, Perret C, Romagnolo B (2005) Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132:1443–1451PubMedCrossRefGoogle Scholar
  6. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedCrossRefGoogle Scholar
  7. Beaurepaire C, Smyth D, McKay DM (2009) Interferon-gamma regulation of intestinal epithelial permeability. J Interferon Cytokine Res 29:133–144PubMedCrossRefGoogle Scholar
  8. Beebe DJ, Huttenlocher A (2010) Introduction to the mechanisms of directed cell migration themed issue. Integr Biol (Camb) 2:559–560CrossRefGoogle Scholar
  9. Bevins CL, Stange EF, Wehkamp J (2009) Decreased Paneth cell defensin expression in ileal Crohn’s disease is independent of inflammation, but linked to the NOD2 1007 fs genotype. Gut 58:882–883 (discussion 883–884)PubMedGoogle Scholar
  10. Bjerknes M, Cheng H (1999) Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116:7–14PubMedCrossRefGoogle Scholar
  11. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–1375PubMedCrossRefGoogle Scholar
  12. Cai WB, Roberts SA, Potten CS (1997) The number of clonogenic cells in crypts in three regions of murine large intestine. Int J Radiat Biol 71:573–579PubMedCrossRefGoogle Scholar
  13. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200PubMedCrossRefGoogle Scholar
  14. Campbell F, Williams GT, Appleton MA, Dixon MF, Harris M, Williams ED (1996) Post-irradiation somatic mutation and clonal stabilisation time in the human colon. Gut 39:569–573PubMedCrossRefGoogle Scholar
  15. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 141:537–561PubMedCrossRefGoogle Scholar
  16. Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359PubMedCrossRefGoogle Scholar
  17. de Dombal FT, Price AB, Thompson H, Williams GT, Morgan AG, Softley A, Clamp SE, Unwin BJ (1990) The British Society of Gastroenterology early gastric cancer/dysplasia survey: an interim report. Gut 31:115–120PubMedCrossRefGoogle Scholar
  18. Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, Oukrif D, Leedham SJ, Deheragoda M, Sasieni P, Novelli MR, Jankowski JA, Turnbull DM, Wright NA, McDonald SA (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci USA 103:714–719PubMedCrossRefGoogle Scholar
  19. Hursting SD, Perkins SN, Brown CC, Haines DC, Phang JM (1997) Calorie restriction induces a p53-independent delay of spontaneous carcinogenesis in p53-deficient and wild-type mice. Cancer Res 57:2843–2846PubMedGoogle Scholar
  20. Issa JP (2000) CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol 249:101–118PubMedGoogle Scholar
  21. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24:36–44PubMedCrossRefGoogle Scholar
  22. Kim K-M, Shibata D (2002) Methylation reveals a niche: stem cell succession in human colon crypts. Oncogene 21:5441–5449PubMedCrossRefGoogle Scholar
  23. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626PubMedCrossRefGoogle Scholar
  24. Loeffler M, Birke A, Winton D, Potten C (1993) Somatic mutation, monoclonality and stochastic models of stem cell organization in the intestinal crypt. J Theor Biol 160:471–491PubMedCrossRefGoogle Scholar
  25. Liu W, Singh SR, Hou SX (2010) JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem 109(5):992–999 PubMedGoogle Scholar
  26. Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Blount PL, Reid BJ (2004) The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res 64:7629–7633PubMedCrossRefGoogle Scholar
  27. Meineke FA, Potten CS, Loeffler M (2001) Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif 34:253–266PubMedCrossRefGoogle Scholar
  28. Milicic A, Harrison LA, Goodlad RA, Hardy RG, Nicholson AM, Presz M, Sieber O, Santander S, Pringle JH, Mandir N, East P, Obszynska J, Sanders S, Piazuelo E, Shaw J, Harrison R, Tomlinson IP, McDonald SAC, Wright NA, Jankowski J (2008) Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res 68:7760–7768PubMedCrossRefGoogle Scholar
  29. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790PubMedCrossRefGoogle Scholar
  30. Nicolas P, Kim K-M, Shibata D, Tavaré S (2007) The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Comput Biol 3:e28PubMedCrossRefGoogle Scholar
  31. Novelli MR, Williamson JA, Tomlinson IP, Elia G, Hodgson SV, Talbot IC, Bodmer WF, Wright NA (1996) Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272:1187–1190PubMedCrossRefGoogle Scholar
  32. Novelli M, Cossu A, Oukrif D, Quaglia A, Lakhani S, Poulsom R, Sasieni P, Carta P, Contini M, Pasca A, Palmieri G, Bodmer W, Tanda F, Wright N (2003) X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci USA 100:3311–3314PubMedCrossRefGoogle Scholar
  33. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28PubMedCrossRefGoogle Scholar
  34. Park HS, Goodlad RA, Wright NA (1995) Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol 147:1416–1427PubMedGoogle Scholar
  35. Pender SL, MacDonald TT (2004) Matrix metalloproteinases and the gut—new roles for old enzymes. Curr Opin Pharmacol 4:546–550PubMedCrossRefGoogle Scholar
  36. Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713PubMedCrossRefGoogle Scholar
  37. Ponder BA, Schmidt GH, Wilkinson MM, Wood MJ, Monk M, Reid A (1985) Derivation of mouse intestinal crypts from single progenitor cells. Nature 313:689–691PubMedCrossRefGoogle Scholar
  38. Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78:219–243PubMedCrossRefGoogle Scholar
  39. Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci USA 107:21064–21069PubMedCrossRefGoogle Scholar
  40. Saleh M, Trinchieri G (2011) Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11:9–20PubMedCrossRefGoogle Scholar
  41. Salzman NH, Underwood MA, Bevins CL (2007) Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 19:70–83PubMedCrossRefGoogle Scholar
  42. Sarra M, Pallone F, Macdonald TT, Monteleone G (2010) IL-23/IL-17 axis in IBD. Inflamm Bowel Dis 16:1808–1813PubMedCrossRefGoogle Scholar
  43. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418PubMedCrossRefGoogle Scholar
  44. Schmidt GH, Winton DJ, Ponder BA (1988) Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development 103:785–790PubMedGoogle Scholar
  45. Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23:23–35PubMedCrossRefGoogle Scholar
  46. Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, Kirkwood TB, Turnbull DM (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112:1351–1360PubMedGoogle Scholar
  47. van der Sluis M, Bouma J, Vincent A, Velcich A, Carraway KL, Buller HA, Einerhand AW, van Goudoever JB, Van Seuningen I, Renes IB (2008) Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: mucin 2-interleukin 10-deficient mice. Lab Invest 88:634–642PubMedCrossRefGoogle Scholar
  48. van Es JH, Clevers H (2005) Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 11:496–502PubMedCrossRefGoogle Scholar
  49. Williams ED, Lowes AP, Williams D, Williams GT (1992) A stem cell niche theory of intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa. Am J Pathol 141:773–776PubMedGoogle Scholar
  50. Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 94:1402–1407PubMedCrossRefGoogle Scholar
  51. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY (2001) Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294:2155–2158PubMedCrossRefGoogle Scholar
  52. Yatabe Y, Tavaré S, Shibata D (2001) Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci USA 98:10839–10844PubMedCrossRefGoogle Scholar
  53. Zhang Z, Andoh A, Yasui H, Inatomi O, Hata K, Tsujikawa T, Kitoh K, Takayanagi A, Shimizu N, Fujiyama Y (2005) Interleukin-1beta and tumor necrosis factor-alpha upregulate interleukin-23 subunit p19 gene expression in human colonic subepithelial myofibroblasts. Int J Mol Med 15:79–83PubMedGoogle Scholar

Copyright information

© Springer-Velag Berlin Heidelberg 2011

Authors and Affiliations

  • Adam Humphries
    • 1
  • Trevor A. Graham
    • 1
  • Stuart A. C. McDonald
    • 2
    Email author
  1. 1.Histopathology UnitLondon Research Institute, Cancer Research UKLondonUK
  2. 2.Centre for Digestive DiseasesBlizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry LondonUK

Personalised recommendations