Skip to main content

The Economic Plausibility of Strict Local Martingales in Financial Modelling

  • Chapter

Abstract

The context for this article is a continuous financial market consisting of a risk-free savings account and a single non-dividend-paying risky security. We present two concrete models for this market, in which strict local martingales play decisive roles. The first admits an equivalent risk-neutral probability measure under which the discounted price of the risky security is a strict local martingale, while the second model does not even admit an equivalent risk-neutral probability measure, since the putative density process for such a measure is itself a strict local martingale. We highlight a number of apparent anomalies associated with both models that may offend the sensibilities of the classically-educated reader. However, we also demonstrate that these issues are easily resolved if one thinks economically about the models in the right way. In particular, we argue that there is nothing inherently objectionable about either model.

Keywords

  • Trading Strategy
  • Contingent Claim
  • Price Function
  • Local Martingale
  • Bessel Process

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Becherer, D.: The numeraire portfolio for unbounded semimartingales. Finance Stoch. 5(3), 327–341 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Cox, A.M.G., Hobson, D.G.: Local martingales, bubbles and option prices. Finance Stoch. 9(4), 477–492 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Delbaen, F., Schachermayer, W.: Arbitrage and free lunch with bounded risk for unbounded continuous processes. Math. Finance 4(4), 343–348 (1994)

    CrossRef  MATH  Google Scholar 

  5. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(3), 463–520 (1994)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Delbaen, F., Schachermayer, W.: Arbitrage possibilities in Bessel processes and their relations to local martingales. Probab. Theory Relat. Fields 102(3), 357–366 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Ekström, E., Tysk, J.: Bubbles, convexity and the Black-Scholes equation. Ann. Appl. Probab. 19(4), 1369–1384 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Elworthy, K.D., Li, X.M., Yor, M.: The importance of strictly local martingales; applications to radial Ornstein-Uhlenbeck processes. Probab. Theory Relat. Fields 115(3), 325–355 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Heston, S.L., Loewenstein, M., Willard, G.A.: Options and bubbles. Rev. Financ. Stud. 20(2), 359–389 (2007)

    CrossRef  Google Scholar 

  10. Janson, S., Tysk, J.: Feynman-Kac formulas for Black-Scholes-type operators. Bull. Lond. Math. Soc. 38(2), 269–282 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Jarrow, R.A., Protter, P., Shimbo, K.: Asset price bubbles in complete markets. In: Fu, M.C., Jarrow, R.A., Yen, J.Y.J., Elliott, R.J. (eds.) Advances in Mathematical Finance, pp. 97–121. Birkhäuser, Boston (2007)

    CrossRef  Google Scholar 

  12. Jarrow, R.A., Protter, P., Shimbo, K.: Asset price bubbles in incomplete markets. Johnson School Research Paper Series No. 03-07, Cornell University (2007)

    Google Scholar 

  13. Jawitz, J.W.: Moments of truncated continuous univariate distributions. Adv. Water Resour. 27(3), 269–281 (2004)

    CrossRef  Google Scholar 

  14. Kabanov, Y., Stricker, C.: Remarks on the true no-arbitrage property. In: Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics, vol. 1857, pp. 186–194. Springer, Berlin (2004)

    Google Scholar 

  15. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11(4), 447–493 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972)

    MATH  Google Scholar 

  17. Platen, E., Heath, D.: A Benchmark Approach to Quantitative Finance. Springer, Berlin (2006)

    CrossRef  MATH  Google Scholar 

  18. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardy Hulley .

Editor information

Editors and Affiliations

Additional information

For Eckhard Platen on the occasion of his 60th birthday, with gratitude.

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hulley, H. (2010). The Economic Plausibility of Strict Local Martingales in Financial Modelling. In: Chiarella, C., Novikov, A. (eds) Contemporary Quantitative Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03479-4_4

Download citation