Advertisement

Transmission Protocols for Instruction Streams

  • J. A. Bergstra
  • C. A. Middelburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5684)

Abstract

Sequential programs under execution produce behaviours to be controlled by some execution environment. Threads as considered in basic thread algebra model such behaviours: upon each action performed by a thread, a reply from an execution environment – which takes the action as an instruction to be processed – determines how the thread proceeds. In this paper, we are concerned with the case where the execution environment is remote: we study some transmission protocols for passing instructions from a thread to a remote execution environment.

Keywords

Basic Action Composition Operator Transmission Channel Atomic Action Sequential Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic and Algebraic Programming 51(2), 125–156 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bergstra, J.A., Bethke, I., Ponse, A.: Decision problems for pushdown threads. Acta Informatica 44(2), 75–90 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bergstra, J.A., Middelburg, C.A.: Program algebra with a jump-shift instruction. Journal of Applied Logic 6(4), 553–563 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ponse, A., van der Zwaag, M.B.: An introduction to program and thread algebra. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 445–458. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1–3), 109–137 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. Journal of the ACM 32(1), 137–161 (1985)CrossRefzbMATHGoogle Scholar
  8. 8.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  9. 9.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31(3), 560–599 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  11. 11.
    Bergstra, J.A., Middelburg, C.A.: Thread algebra with multi-level strategies. Fundamenta Informaticae 71(2–3), 153–182 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1–21. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer Science, An EATCS Series. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Baeten, J.C.M., Bergstra, J.A.: On sequential composition, action prefixes and process prefix. Formal Aspects of Computing 6(3), 250–268 (1994)CrossRefzbMATHGoogle Scholar
  15. 15.
    Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Formal Aspects of Computing 8(2), 188–208 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in Theoretical Computer Science, An EATCS Series. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. A. Bergstra
    • 1
  • C. A. Middelburg
    • 1
  1. 1.Informatics Institute, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations