Skip to main content

Building Mathematics-Based Software Systems to Advance Science and Create Knowledge

  • Chapter
  • 2245 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5760))

Abstract

Kurt Mehlhorn’s foundational results in computational geometry provide not only a basis for practical geometry systems such as Leda and CGAL, they also, in the spirit of Euclid, provide a sound basis for geometric truth. This article shows how Mehlhorn’s ideas from computational geometry have influenced work on the logical basis for constructive geometry. In particular there is a sketch of new decidability results for constructive Euclidean geometry as formulated in computational type theory, CTT. Theorem proving systems for type theory are important in establishing knowledge to the highest standards of certainty, and in due course they will play a significant role in geometry systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mehlhorn, K.: Polynomial and abstract subrecursive classes. Journal of Computer and System Sciences, 148–176 (1976)

    Google Scholar 

  2. Mehlhorn, K., Näher, S.: LEDA — A platform for combinatorial and geometric computing. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  3. Mehlhorn, K.: Data Structures and Algorithms 3: Multi-Dimensional Searching and Computational Geometry. Springer, Heidelberg (1984)

    Book  MATH  Google Scholar 

  4. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Square Roots. In: Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms (SODA 1997) (1997)

    Google Scholar 

  5. Burnikel, F., Mehlhorn, S.: Efficient exact geometric computation made easy. In: Annual ACM Symposium on Computational Geometry, pp. 341–350 (1999)

    Google Scholar 

  6. Mehlhorn, K., Osbild, R., Sagraloff, M.: Reliable and efficient computational geometry via controlled perturbation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 299–310. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Fortune, S.J., Van Wyk, C.: Static analysis yields efficient exact integer arithmetic for computational geometry. Transactions on Graphics, 223–248 (1996)

    Google Scholar 

  8. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, NJ (1986)

    Google Scholar 

  9. Allen, S.F., Bickford, M., Constable, R., Eaton, R., Kreitz, C., Lorigo, L., Moran, E.: Innovations in computational type theory using Nuprl. Journal of Applied Logic 4, 428–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heath, S.T.L.: The thirteen books of Euclid’s Elements. Dover, New York (1956)

    MATH  Google Scholar 

  11. Kettner, L., Näher, S.: Two computational geometry libraries: LEDA and CGAL. In: Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1435–1464. CRC Press LLC, Boca Raton (2004)

    Google Scholar 

  12. Boehm, H., Cartwright, R.: Exact real arithmetic, formulating real numbers as functions. Research Topics in Functional Programming, 43–64 (1990)

    Google Scholar 

  13. Bishop, E.: Foundations of Constructive Analysis. McGraw Hill, New York (1967)

    MATH  Google Scholar 

  14. Julian, W., Mines, R., Richman, F.: Polynomial and abstract subrecursive classes. Pacific Journal of Mathematics 1, 92–102 (1978)

    Google Scholar 

  15. Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Springer, New York (1988)

    Book  MATH  Google Scholar 

  16. Edwards, H.M.: Essays in Constructive Mathematics. Springer, New York (2005)

    MATH  Google Scholar 

  17. Buchberger, B.: Theory exploration with Theorema. Analele Universitatii din Timisoara, Ser Matematica-Informatica, XXXVIII 2, 9–32 (2000)

    Google Scholar 

  18. Jackson, P.B.: Enhancing the Nuprl Proof Development System and Applying it to Computational Abstract Algebra. PhD thesis, Cornell University, Ithaca, NY (1995)

    Google Scholar 

  19. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development; Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  20. Bishop, E., Bridges, D.: Constructive Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  21. Forester, M.B.: Formalizing constructive real analysis. Technical Report TR93-1382, Computer Science Department, Cornell University, Ithaca, NY (1993)

    Google Scholar 

  22. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  23. Gilbert, A., MacDonnell, D.: The Steiner-Lehmus theorem. American Math. Monthly 70, 79–80 (1963)

    Article  MathSciNet  Google Scholar 

  24. Hilbert, D.: The Foundations of Geometry. Open Court Publishing, London (1921)

    Google Scholar 

  25. Tarski, A., Givant, S.: Tarski’s system of geometry. Bulletin of Symbolic Logic 5(2), 175–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. von Plato, J.: The axioms of constructive geometry. Annals of Pure and Applied Logic 76, 169–200 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schwichtenberg, H.: Constructive analysis with witnesses. In: Proof Technology and Computation. Natio Science Series, pp. 323–354. IOS Press, Berlin (2006)

    Google Scholar 

  28. de Bruijn, N.G.: The mathematical vernacular, a language for mathematics with typed sets. In: Nederpelt, R.P., Geuvers, J.H., Vrijer, R.C.D. (eds.) Selected Papers on Automath. Studies in Logic and the Foundations of Mathematics, vol. 133, pp. 865–935. Elsevier, Amsterdam (1994)

    Chapter  Google Scholar 

  29. Martin-Löf, P.: Constructive mathematics and computer programming. In: Proceedings of the Sixth International Congress for Logic, Methodology, and Philosophy of Science, pp. 153–175. North-Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  30. Killing, W.: Einführung in die Grundlagen der Geometrie. Druck un Verlag von Ferdinand Schöningh, Mainz (1893)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Constable, R.L. (2009). Building Mathematics-Based Software Systems to Advance Science and Create Knowledge. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03456-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03455-8

  • Online ISBN: 978-3-642-03456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics