Skip to main content

Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony for Structural Design Optimization

  • Chapter
Book cover Harmony Search Algorithms for Structural Design Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 239))

Abstract

This chapter considers the implementation of the heuristic particle swarm ant colony optimization (HPSACO) methodology to find an optimum design of different types of structures. HPSACO is an efficient hybridized approach based on the harmony search scheme, particle swarm optimizer, and ant colony optimization. HPSACO utilizes a particle swarm optimization with a passive congregation algorithm as a global search, and the idea of ant colony approach worked as a local search. The harmony search-based mechanism is used to handle the variable constraints. In the discrete HPSACO, agents are allowed to select discrete values from the permissible list of cross sections. The efficiency of the HPSACO algorithm is investigated to find an optimum design of truss structures with continuous or discrete search domains and for frame structures with a discrete search domain. The results indicate that the HPSACO is a quite effective algorithm to find the optimum solution of structural optimization problems with continuous or discrete variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Computers and Structures 82, 781–798 (2004)

    Article  Google Scholar 

  2. Kaveh, A., Farahmand Azar, B., Talatahari, S.: Ant colony optimization for design of space trusses. International Journal of Space Structures 23(3), 167–181 (2008)

    Article  Google Scholar 

  3. Kaveh, A., Talatahari, S.: An improved ant colony optimization for constrained engineering design problems. Engineering Computations (accepted for publication, 2009)

    Google Scholar 

  4. Goldberg, D.E., Samtani, M.P.: Engineering optimization via genetic algorithm, in Will KM (Eds). In: Proceeding of the 9th Conference on Electronic Computation, ASCE, February 1986, pp. 471–482 (1986)

    Google Scholar 

  5. Hajela, P.: Genetic search - an approach to the non-convex optimization problem. AIAA Journal 28(71), 1205–1210 (1990)

    Article  Google Scholar 

  6. Rajeev, S., Krishnamoorthy, C.S.: Discrete optimization of structures using genetic algorithms. Journal of Structural Engineering, ASCE 118(5), 1233–1250 (1992)

    Article  Google Scholar 

  7. Rajeev, S., Krishnamoorthy, C.S.: Genetic algorithm-based methodologies for design optimization of trusses. Journal of Structural Engineering, ASCE 123(3), 350–358 (1997)

    Article  Google Scholar 

  8. Koumousis, V.K., Georgious, P.G.: Genetic algorithms in discrete optimization of steel truss roofs. Journal of Computing in Civil Engineering, ASCE 8(3), 309–325 (1994)

    Article  Google Scholar 

  9. Hajela, P., Lee, E.: Genetic algorithms in truss topological optimization. International Journal of Solids and Structures 32(22), 3341–3357 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wu, S.-J., Chow, P.-T.: Integrated discrete and configuration optimization of trusses using genetic algorithms. Computers and Structures 55(4), 695–702 (1995)

    Article  MATH  Google Scholar 

  11. Soh, C.K., Yang, J.: Fuzzy controlled genetic algorithm search for shape optimization. Journal of Computing in Civil Engineering, ASCE 10(2), 143–150 (1996)

    Article  Google Scholar 

  12. Camp, C., Pezeshk, S., Cao, G.: Optimized design of two dimensional structures using a genetic algorithm. Journal of Structural Engineering, ASCE 124(5), 551–559 (1998)

    Article  Google Scholar 

  13. Shrestha, S.M., Ghaboussi, J.: Evolution of optimization structural shapes using genetic algorithm. Journal of Structural Engineering, ASCE 124(11), 1331–1338 (1998)

    Article  Google Scholar 

  14. Pezeshk, S., Camp, C.V., Chen, D.: Design of nonlinear framed structures using genetic optimization. Journal of Structural Engineering, ASCE 126(3), 382–388 (2000)

    Article  Google Scholar 

  15. Erbatur, F., Hasancebi, O., Tutuncil, I., Kihc, H.: Optimal design of planar and structures with genetic algorithms. Computers and Structures 75, 209–224 (2000)

    Article  Google Scholar 

  16. Coello, C.A., Christiansen, A.D.: Multiobjective optimization of trusses using genetic algorithms. Computers and Structures 75(6), 647–660 (2000)

    Article  Google Scholar 

  17. Greiner, D., Winter, G., Emperador, J.M.: Optimising frame structures by different strategies of genetic algorithms. Finite Elements in Analysis and Design 37(5), 381–402 (2001)

    Article  MATH  Google Scholar 

  18. Kameshki, E.S., Saka, M.P.: Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm. Computers and Structures 79, 1593–1604 (2001)

    Article  Google Scholar 

  19. Kameshki, E.S., Saka, M.P.: Genetic algorithm based optimum bracing design of non-swaying tall frames. Journal of Constructional Steel Research 57, 1081–1097 (2001)

    Article  Google Scholar 

  20. Kameshki, E.S., Saka, M.P.: Optimum geometry design of nonlinear braced domes using genetic algorithm. Computers and Structures 85(1-2), 71–79 (2007)

    Article  Google Scholar 

  21. Saka, M.P.: Optimum design of pitched roof steel frames with haunched rafters by genetic algorithm. Computers and Structures 81(18-19), 1967–1978 (2003)

    Article  Google Scholar 

  22. Saka, M.P.: Optimum topological design of geometrically nonlinear single layer latticed domes using coupled genetic algorithm. Computers and Structures 85(21-22), 1635–1646 (2007)

    Article  Google Scholar 

  23. Kaveh, A., Kalatjari, V.: Genetic algorithm for discrete sizing optimal design of trusses using the force method. International Journal for Numerical Methods in Engineering 55, 55–72 (2002)

    Article  MATH  Google Scholar 

  24. Kaveh, A., Kalatjari, V.: Topology optimization of trusses using genetic algorithm, force method, and graph theory. International Journal for Numerical Methods in Engineering 58(5), 771–791 (2003)

    Article  MATH  Google Scholar 

  25. Kaveh, A., Abditehrani, A.: Design of frames using genetic algorithm, force method and graph theory. International Journal for Numerical Methods in Engineering 61, 2555–2565 (2004)

    Article  MATH  Google Scholar 

  26. Kaveh, A., Khanlari, K.: Collapse load factor of planar frames using a modified Genetic algorithm. Communications in Numerical Methods in Engineering 20, 911–925 (2004)

    Article  MATH  Google Scholar 

  27. Kaveh, A., Rahami, H.: Analysis, design and optimization of structures using force method and genetic algorithm. International Journal for Numerical Methods in Engineering 65(10), 1570–1584 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kaveh, A., Shahrouzi, M.: Simultaneous topology and size optimization of structures by genetic algorithm using minimal length chromosome. Engineering Computations 23(6), 664–674 (2006)

    Article  Google Scholar 

  29. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan (1995)

    Google Scholar 

  30. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufman Publishers, San Francisco (2001)

    Google Scholar 

  31. Schutte, J.J., Groenwold, A.A.: Sizing design of truss structures using particle swarms. Structural and Multidisciplinary Optimization 25, 261–269 (2003)

    Article  Google Scholar 

  32. Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H.: A heuristic particle swarm optimizer for optimization of pin connected structures. Computers and Structures 85, 340–349 (2007)

    Article  Google Scholar 

  33. Perez, R.E., Behdinan, K.: Particle swarm approach for structural design optimization. Computers and Structures 85, 1579–1588 (2007)

    Article  Google Scholar 

  34. Kathiravan, R., Ganguli, R.: Strength design of composite beam using gradient and particle swarm optimization. Composite Structures 81(4), 471–479 (2007)

    Article  Google Scholar 

  35. Suresh, S., Sujit, P.B., Rao, A.K.: Particle swarm optimization approach for multi-objective composite box-beam design. Composite Structures 81(4), 598–605 (2007)

    Article  Google Scholar 

  36. Angeline, P.: Evolutionary optimization versus particle swarm optimization: philosophy and performance difference. In: Proceeding of the Evolutionary Programming Conference, San Diego, USA (1998)

    Google Scholar 

  37. Dorigo, M.: Optimization, learning and natural algorithms. PhD thesis, Dip. Elettronica e Informazione, Politecnico di Milano, Italy (1992)

    Google Scholar 

  38. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B 26(1), 1–13 (1996)

    Article  Google Scholar 

  39. Camp, C.V., Bichon, J.: Design of space trusses using ant colony optimization. Journal of Structural Engineering, ASCE 130(5), 741–751 (2004)

    Article  Google Scholar 

  40. Serra, M., Venini, P.: On some applications of ant colony optimization metaheuristic to plane truss optimization. Structural Multidisciplinary Optimization 32(6), 499–506 (2006)

    Article  Google Scholar 

  41. Camp, C.V., Bichon Stovall, J.P.: Design of steel frames using ant colony optimization. Journal of Structural Engineering, ASCE 131, 369–379 (2005)

    Article  Google Scholar 

  42. Kaveh, A., Shojaee, S.: Optimal design of skeletal structures using ant colony optimisation. International Journal for Numerical Methods in Engineering 70(5), 563–581 (2007)

    Article  Google Scholar 

  43. Kaveh, A., Hassani, B., Shojaee, S., Tavakkoli, S.M.: Structural topology optimization using ant colony methodology. Engineering Structures 30(9), 2259–2265 (2008)

    Article  Google Scholar 

  44. Kaveh, A., Shahrouzi, M.: Dynamic selective pressure using hybrid evolutionary and ant system strategies for structural optimization. International Journal for Numerical Methods in Engineering 73(4), 544–563 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm; harmony search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

  46. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer methods in applied mechanics and engineering 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  47. Lee, K.S., Choi, C.S.: Discrete-continuous configuration optimization methods for structures using the harmony search algorithm. Key Engineering Materials 324-245, 1293–1296 (2006)

    Article  Google Scholar 

  48. Saka, M.P.: Optimum geometry design of geodesic domes using harmony search algorithm. Advances in Structural Engineering 10(6), 595–606 (2007)

    Article  Google Scholar 

  49. Degertekin, S.O.: Optimum design of steel frames using harmony search algorithm. Structural and Multidisciplinary Optimization 36, 393–401 (2008)

    Article  Google Scholar 

  50. Degertekin, S.O.: Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods. Structural Engineering and Mechanics 29, 391–410 (2008)

    Google Scholar 

  51. Saka, M.P.: Optimum design of steel sway frames to BS5950 using harmony search algorithm. Journal of Constructional Steel Research 65(1), 36–43 (2009)

    Article  MathSciNet  Google Scholar 

  52. He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R., Paton, R.C.: A particle swarm optimizer with passive congregation. Biosystem 78, 135–147 (2004)

    Article  Google Scholar 

  53. Deneubourg, J.L., Goss, S.: Collective patterns and decision-making. Ethnology Ecology and Evolution 1, 295–311 (1989)

    Google Scholar 

  54. Goss, S., Beckers, R., Deneubourg, J.L., Aron, S., Pasteels, J.M.: How trail laying and trail following can solve foraging problems for ant colonies. In: Hughes, R.N. (ed.) Behavioural mechanisms in food selection, NATO-ASI Series, Berlin, vol. G 20 (1990)

    Google Scholar 

  55. American Institute of Steel Construction, AISC, Manual of steel construction–Load resistance factor design, 3rd edn. AISC, Chicago (1991)

    Google Scholar 

  56. Shelokar, P.S., Siarry, P., Jayaraman, V.K., Kulkarni, B.D.: Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Applied Mathematics and Computation 188, 129–142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. Kaveh, A., Talatahari, S.: A hybrid particle swarm and ant colony optimization for design of truss structures. Asian Journal of Civil Engineering 9(4), 329–348 (2008)

    Google Scholar 

  58. Kaveh, A., Talatahari, S.: A discrete particle swarm ant colony optimization for design of steel frames. Asian Journal of Civil Engineering 9(6), 563–575 (2008)

    Google Scholar 

  59. Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Computers and Structures 87(5–6), 267–283 (2009)

    Article  Google Scholar 

  60. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191, 1245–1287 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  61. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  62. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolutionary Computation 7(1), 19–44 (1999)

    Article  Google Scholar 

  63. Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. Journal of Experimental and Theoretical Computer Science 2(2), 4–30 (1990)

    Google Scholar 

  64. He, S., Prempain, E., Wu, Q.H.: An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization 36(5), 585–605 (2004)

    Article  MathSciNet  Google Scholar 

  65. Hasançebi, O., Çarbas, S., Dogan, E., Erdal, F., Saka, M.P.: Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Computers and Structures 87(5–6), 284–302 (2009)

    Article  Google Scholar 

  66. Kaveh, A., Talatahari, S.: A particle swarm ant colony optimization for truss structures with discrete variables. Journal of Constructional Steel Research (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaveh, A., Talatahari, S. (2009). Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony for Structural Design Optimization. In: Geem, Z.W. (eds) Harmony Search Algorithms for Structural Design Optimization. Studies in Computational Intelligence, vol 239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03450-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03450-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03449-7

  • Online ISBN: 978-3-642-03450-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics