Skip to main content

Jahn–Teller Polarons, Bipolarons and Inhomogeneities. A Possible Scenario for Superconductivity in Cuprates

  • Chapter
  • First Online:
The Jahn-Teller Effect

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 97))

  • 2839 Accesses

Abstract

Some of the early models of high temperature superconductivity (HTS) in cuprates dismissed a pairing mechanism based on electron–phonon (e–ph) interactions. One of the arguments against the e–ph theories was the negligible isotope effect on the critical temperature, T c. Other arguments were based on approximations performed near the strong e–ph interaction regime in which HTS might take place1. This leads to the conclusion that an e–ph paring is inoperative. As a result, pure electron correlations, excitonic mechanisms and spin fluctuations have attracted most of the attention, overshadowing the e–ph approaches. However, some of the features shown by copper oxides seem to validate the e–ph models, in particular those which concern small bipolarons and the Jahn–Teller (JT) effect. For instance, these materials have a bandwidth within a range where the strength of JT coupling is important. Nonadiabatic effects cannot be ignored when high frequency phonons are coupled to itinerant charges. Therefore, theories based on on-site or intersite bipolarons, JT bipolarons and different mechanisms of carrier dynamics, such as Bose-Einstein condensation and tunneling-percolation, have been proposed. However, our discussion is centered on the JT models and the intriguing possibility that HTS could be driven by JT forces. The JT models have several distinctive features: they deal with a multidimensional electron basis coupled to symmetric phonon degrees of freedom. Moreover, JT Polarons exhibit strong anharmonicity. The review highlights these local constraints and their consequences for the dynamics of polaron formation, the appearance of an inhomogeneous state and charge transport properties. In addition, the broken local symmetry at the thermodynamic limit of interacting JT polarons, when it is combined with long range Coulomb interactions, leads to specific macroscopic manifestations. Thus, cooperative effects go beyond standard structural transitions, and a novel organization of nanoscopic textures is manifested. Here we also address this issue and its connection with HTS, e.g. whether the so-called pseudogap observed in cuprates is related to the energy scale of the JT-bipolaron formation and the phase-segregation phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.A. Muller, in Structural Phase Transition and Soft Modes, ed. by E.J. Samuelsen, E. Anderson, J. Feder (Universitetsforlag, Oslo, 1971) p. 85

    Google Scholar 

  2. J.G. Bednorz, K.A. Muller, J. Phys. Condens. Matter 64, 189 (1986)

    Article  CAS  Google Scholar 

  3. K.M. Wu et al., Phys. Rev. Lett. 58, 908 (1987)

    Article  CAS  Google Scholar 

  4. P. Dai, B.C. Chakoumakos, G.F. Sun, K.W. Wong, Y. Xin, D.F. Lu, Physica C:Superconductivity. 243(3–4), 201–206 (1995)

    Article  CAS  Google Scholar 

  5. A.A. Abrikosov, I.M. Khalatnikov, Rep. Prog. Phys. 22, 329–367 (1959)

    Article  CAS  Google Scholar 

  6. F. Steglish, J. Aarts, C.D. Bredl, W. Leike, D.E.M.W. Franz, H. Schafer Phys, Rev. Lett. 43, 1892 (1976)

    Article  Google Scholar 

  7. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 108, 1175 (1957)

    Google Scholar 

  8. N.F. Mott, R. Peierls, Proc. Phys. Soc. Lond. 49, 72 (1937)

    Article  Google Scholar 

  9. N.F. Mott, Proc. Phys. Soc. Lond. Series A 62, 416 (1949)

    Article  Google Scholar 

  10. P.W. Anderson, The theory of superconductivity in the HighT c Cuprates (Princeton University Press, Princeton NJ, 1997)

    Google Scholar 

  11. C.T. Chen et al., Phys. Rev. Lett. 66, 104, (1991)

    Article  CAS  Google Scholar 

  12. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418, (1985)

    Article  CAS  Google Scholar 

  13. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

    Article  CAS  Google Scholar 

  14. V.J. Emery G. Reiter, Phys. Rev. B 38, 4632 (1988)

    Article  Google Scholar 

  15. C.M. Varma, S. Schmitt-Rink, Solid state Com. 62, 681 (1987)

    Article  CAS  Google Scholar 

  16. F. Mattheiss, Phys. Rev. Lett. 58, 1028, (1987)

    Article  CAS  Google Scholar 

  17. P.W. Anderson, Phys. Rev. 79, 350–356 (1950)

    Article  Google Scholar 

  18. P.W. Anderson, G. Baskaran, Z. Zou, T. Hsu, Phys. Rev. Lett. 58, 2790 (1987) For recent review see Paramekanti 2001, 2003

    Google Scholar 

  19. C. Gross, R. Joynt, T.M. Rice, Phys. Rev. B. 68, See also E. Daggoto, Int. J. Mod. Phys. 5 77 (191)(1987)

    Google Scholar 

  20. A. Moreo et al., Phys. Rev. B. 41, 2313 (1990)

    Article  Google Scholar 

  21. N.F. Berk, J.R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966)

    Article  CAS  Google Scholar 

  22. G. Kotliar, P.A. Lee, N. Read, Physica C: Superconductivity. 153–155, 1538 (1988)

    Google Scholar 

  23. F. Marsiglio, J. E. Hirsch Phys. Rev. B 41, 6435–6456 (1990)

    Article  CAS  Google Scholar 

  24. J.E. Hirsch Phys. Rev. Lett. 87, 206402 (2001)

    Article  CAS  Google Scholar 

  25. D.N. Basov et al., Science. 283, 49 (1999)

    Article  CAS  Google Scholar 

  26. S. Sachdev, Quantum Phase Transitions. (Cambridge University Press, New York, 1999)

    Google Scholar 

  27. P. Coleman, A.J. Schofield,, A.M. Tsvelik, Phys. Rev. Lett. 76, 1324–1327 (1996)

    Article  CAS  Google Scholar 

  28. P. Krotkov, A.V. Chubukov, Phys. Rev. B 74, 014509 (2006)

    Article  CAS  Google Scholar 

  29. A.J. Millis, H. Monien, D. Pines, Phys. Rev. B. 42, 167 (1990)

    Article  CAS  Google Scholar 

  30. D. Pines. Physica B 163, 78 (1990)

    Google Scholar 

  31. F.C. Zhang, T.M. Rice, Phys. Rev. B. 37, 3759 (1988)

    Article  CAS  Google Scholar 

  32. L.H. Tjeng, et al., Phys. Rev. Lett. 78, 1126 (1997)

    Article  CAS  Google Scholar 

  33. S. Miyaki, K. Makoshi, H. Koizimi, J. Phys. Soc. Jpn. 77, 034702 (2008)

    Article  CAS  Google Scholar 

  34. D.A. Wollman, D.J. Van Harlingen, J. Giapintzakis,, D.M. Ginsberg, Phys. Rev. Lett. 74, 797 (1995)

    Article  CAS  Google Scholar 

  35. C.C. Tsuei, et al., Phys. Rev. Lett. 73, 593 (1994)

    Article  CAS  Google Scholar 

  36. G. Kotliar, J. Liu, Phys. Rev. B. 38, 5142 (1988)

    Article  Google Scholar 

  37. C. Gros Phys. Rev. B 38, 931 (1988)

    Google Scholar 

  38. J.P. Hague, Phys. Rev. B. 73, 060503 (R) (2006)

    Google Scholar 

  39. M. Grilli, C. Castellani Phys. Rev. B 50, 16880 (1994)

    Article  CAS  Google Scholar 

  40. Z.X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993)

    Article  CAS  Google Scholar 

  41. Z.H. Damascelli, Z.X. Shen, Rev. Modern Phys. 75, 473, (2003)

    Article  CAS  Google Scholar 

  42. H. Matsui, T. Sato et al., Phys. Rev. B. 67, 060501 (2003); Physica C: Superconductivity 460–462, 862 (2007)

    Google Scholar 

  43. A. Lanzara et al., Nature 412, 510 (2001)

    Article  CAS  Google Scholar 

  44. V. Hinkov et al., Science 319, 597 (2008)

    Article  CAS  Google Scholar 

  45. H. Yamase, W. Metzner, Phys. Rev. B. 73, 214517 (2006)

    Article  CAS  Google Scholar 

  46. D. Mihailovic, C.M. Foster, K. Voss, A.J. Hegeer, Phys. Rev. B. 42, 7989 (1990)

    Article  CAS  Google Scholar 

  47. J.P. Falck, A. Levy, M.A. Kastner, R.J. Birgenaou, Phys. Rev. Lett. 69, 1109 (1992); Phys. Rev. B 48, 4043 (1993)

    Google Scholar 

  48. D. Emin, Phys. Rev. B. 45, 5525 (1992)

    Article  Google Scholar 

  49. S.J. Bilinge, T. Egami, Rev. B. 47, 14386 (1993)

    Article  Google Scholar 

  50. J. Mustre de León, I. Batistic, A.R. Bishop, S.D. Conradson, S.A. Trugman, Phys. Rev. Lett. 68, 3236 (1992)

    Article  Google Scholar 

  51. M. Salkola, A.R. Bishop, J. Mustre de Leon, S.A. Trugman. Phys. Rev. B 49 3671 (1994)

    Google Scholar 

  52. A. Bianconi et al., Phys. Rev. Lett. 76, 3412 (1996)

    Article  CAS  Google Scholar 

  53. E.S. Bozin et al., Phys. Rev. Lett. 84, 5856 (2000)

    Article  CAS  Google Scholar 

  54. J. Mustre de Leon, M. Acosta-Alejandro, S.D. Conradson, A. Bishop, J. Supercond. Nov. Magn. 15(5) (2002)

    Google Scholar 

  55. C. Giannetti, C. Coslovich et al., Phys. Rev. B. (2009)

    Google Scholar 

  56. T. Mertelj, J. Demsar, B. Podobnik, I. Poberaj, D. Mihailovic. Phys. Rev. B 55, 6061 (1997)

    Article  CAS  Google Scholar 

  57. V.V. Kabanov, J. Demsar, D. Mihailovic Phys. Rev. Lett. 95, 147002 (2005)

    Article  CAS  Google Scholar 

  58. P. Kusar, V.V. Kabanov, J. Demsar, T. Mertelj, S. Sugai, D. Mihailovic Phys Rev. Lett. 101 227001 (2008)

    Article  CAS  Google Scholar 

  59. D. Mihailovic, Phys. Rev. Lett. 94, 207001 (2005)

    Article  CAS  Google Scholar 

  60. D.J. Derro et al., Phys Rev Lett. 88, 097002 (2002)

    Article  CAS  Google Scholar 

  61. S.H. Pan et al., Nature 413 282 (2001)

    Article  CAS  Google Scholar 

  62. McElroy et al., Nature 422, 592 (2003)

    Google Scholar 

  63. K. Gomes et al., Nature 477, 569 (2007)

    Article  CAS  Google Scholar 

  64. A. Pasupathy et al., Science 320, 196 (2008)

    Article  CAS  Google Scholar 

  65. C. Howald et al., Phys. Rev. B. 67, 014533 (2003)

    Article  CAS  Google Scholar 

  66. B. Batlogg, et al., Phys. Rev. Lett. 58, 2333 (1987)

    Article  CAS  Google Scholar 

  67. J. Mustre de Leon, R. de Coss, A.R. Bishop, S.A. Trugman, Phys. Rev. B. 49, 3671 (1994)

    Article  Google Scholar 

  68. K.A. Müller, Z. Phys. B. 80, 193 (1990)

    Article  Google Scholar 

  69. R. Temprano et al., Phys. Rev. Lett. 84, 1999 (2000) see also Phys. Rev. B 66, 184506 (2002)

    Google Scholar 

  70. A. Lanzara et al., Cond. Matt 11, L254 (1999)

    Article  Google Scholar 

  71. G.H. Gweon et al., Nature 430, 187 (2004)

    Article  CAS  Google Scholar 

  72. V.Z. Kresin, S.A. Wolf, Phys. Rev. B 49, 3652 (1994)

    Article  CAS  Google Scholar 

  73. R. Khasanov, et al., Phys. Rev. B. 77, 104530 (2007); Phys. Rev. Lett. 98, 057007 (2007); Phys. Rev. Lett. 99, 237601 (2007); Phys. Rev. Lett. (2007) 98, 057007

    Google Scholar 

  74. A. Bussmann-Holder, H. Keller, Eur. Phys. J. B. 44, 487 (2005)

    Article  CAS  Google Scholar 

  75. A. Bussmann-Holder, et al., Europhys. Lett. 72, 423 (2005)

    Article  CAS  Google Scholar 

  76. H. Oyanagi, A. Tsukada, M. Naito, N.L. Saini, Phys. Rev. B. 77, 024511 (2007)

    Article  CAS  Google Scholar 

  77. M. Abrecht, et al., Phys. Rev. Lett. 84, 057002 (2003)

    Article  CAS  Google Scholar 

  78. A.S. Alexandrov, N. Mott, Polarons, Bipolarons, Edit. World Scientific (1995)

    Google Scholar 

  79. A. Alexandrov, J. Ranninger, Phys. Rev. B. 24, 1164 (1981)

    Article  CAS  Google Scholar 

  80. A.S. Alexandrov, N.F. Mott, Phys. Rev. Lett. 71, 1075 (1993)

    Article  CAS  Google Scholar 

  81. A.S. Alexandrov. Phys. Rev. B 77, 094502 (2008); Phys. Rev. B 61, 12315 (2000)

    Google Scholar 

  82. A.S. Alexandrov, V.V. Kabanov,, N.F. Mott, Phys. Rev. Lett. 77, 4796 (1996)

    Article  CAS  Google Scholar 

  83. Y. Takada, Phys. Rev. B. 26, 1223 (1982)

    Article  CAS  Google Scholar 

  84. A.S. Alexandrov, Polarons in advanced materials. Springer Series in materials science 103, edit. Springer (2007)

    Google Scholar 

  85. J.P. Hague, P.E. Kornilovitch, J.H. Samson, A.S. Alexandrov, Phys. Rev. Lett. 98, 037002 (2007)

    Article  CAS  Google Scholar 

  86. I.B. Bersuker, The Jahn-Teller Effect Edit. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  87. E. Warren, Picket Rev. Mod. Phys. 61, 433 (1989)

    Article  Google Scholar 

  88. T.A. Tyson, M. Leon, et al., Phys. Rev. B. 53, 13982 (1996)

    Article  Google Scholar 

  89. P.E. Kornilovitch, Phys. Rev. Lett. 84, 1551 (2000)

    Article  CAS  Google Scholar 

  90. Y. Takada, Phys. Rev. B. 61, 8631 (2000)

    Article  CAS  Google Scholar 

  91. H. Barenzten, Eur. Phys. J. 24, 197 (2001)

    Google Scholar 

  92. S. El Shawish, J. Bonča, K.u. Li-Chung,, S.A. Trugman, Phys. Rev. B. 67, 014301 (2003)

    Google Scholar 

  93. M.D. Kaplan, B.G. Vekheter, Modern inorganic chemistry. Series editor P. Fackler, Jr. (Plenum Press, New York, 1995)

    Google Scholar 

  94. J.B. Goodenough, J.S. Zhou, J. Chart, Phys. Rev. B. 475275 (1993)

    Google Scholar 

  95. R.S. Markiewicz, Physica C. 255, 211 (1995)

    Article  CAS  Google Scholar 

  96. J. Miranda, V. Kabanov, J. Supercond. Nov. Magn. 22, 287 (2009) and references therein. Also in “charge inhomogeneities in strongly correlated systems” by A. Castro and C. Morais in the book “Strong interaction in low dimensions systems”, edit. Springer (2004)

    Google Scholar 

  97. K.H. Johnson et al., Physica C. 153, 1165 (1988)

    Article  Google Scholar 

  98. K.H. Jonhson, D.P. Clougherty, M.E. McHenry, Mod. Phys. Lett. B3 867 (1989)

    Google Scholar 

  99. A.S. Moskvin, A.S. Ovchinnikov, O.S. Kovalev, Phys. Solid State. 39(11) 1742 (1997)

    Google Scholar 

  100. R. Markiewicz, C. Kusko, V. Kidambi, Phys. Rev. B. 60, 627 (1999)

    Article  CAS  Google Scholar 

  101. G. Bersuker, J.B. Goodenough, Physica C. 274, 267 (1997)

    Article  CAS  Google Scholar 

  102. D. Mihailovic, V.V. Kabanov, Phys. Rev. B. 63, 054505 (2001)

    Article  CAS  Google Scholar 

  103. V.V. Kabanov, D. Mihailovic, Phys. Rev. B. 65, 212508 (2002)

    Article  CAS  Google Scholar 

  104. T. Mertelj, V.V. Kabanov,, D. Mihailovic, Phys. Rev. Lett. 94, 147003 (2005)

    Article  CAS  Google Scholar 

  105. R.J. McQeeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane,, Y. Endoh, Phys. Rev. Lett. 82, 628 (1999)

    Article  Google Scholar 

  106. H.A. Mook, F. Dogan, Nat. Lond. 401, 145 (1999)

    Article  CAS  Google Scholar 

  107. T. Mertelj, V.V. Kabanov, J. Miranda Mena,, D. Mihailovic, Phys. Rev. B. 76, 054523 (2007)

    Article  CAS  Google Scholar 

  108. J. Miranda, T. Mertelj, V.V. Kabanov, D. Mihailovic, J. Supercond. Nov. Magn. 20, 587 (2007)

    Article  CAS  Google Scholar 

  109. J. Miranda, T. Mertelj, V.V. Kabanov, D. Mihailovic, J. Supercond. Nov. Magn. 22, 281 (2009)

    Article  CAS  Google Scholar 

  110. J.C. Phillips, Phys. Rev. B. 75, 214503 (2007)

    Article  CAS  Google Scholar 

  111. J.C. Phillips, Phys. Rev. Lett. 19, 856 (1987)

    Google Scholar 

  112. D. Mihailovic, V.V. Kabanov, K.A. Muller, Europhys. Lett. 57(2), 254–259 (2002)

    Article  CAS  Google Scholar 

  113. A. Bianconi, N.L. Saini, S. Agrestini, D. Di Castro, G. Bianconi, Int. J. Mod. Phys. 14, 3342 (2000)

    Article  CAS  Google Scholar 

  114. A. Bianconi, S. Agrestini, G. Bianconi, D. Di Castro, N.L. Saini 2001. J. Alloys Compounds 317–318, 537 (2000)

    Google Scholar 

  115. J. Miranda, M.de Leon, A.R. Bishop, Supercond. Nov. Magn. 20, 603 (2007)

    Google Scholar 

  116. M.de Leon, J. Miranda, A.R. Bishop, J. Phys. Conf. Series. 108, 012020 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Miranda Mena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mena, J.M. (2009). Jahn–Teller Polarons, Bipolarons and Inhomogeneities. A Possible Scenario for Superconductivity in Cuprates. In: Köppel, H., Yarkony, D., Barentzen, H. (eds) The Jahn-Teller Effect. Springer Series in Chemical Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03432-9_25

Download citation

Publish with us

Policies and ethics