Skip to main content

The Jahn–Teller Effect in Binary Transition Metal Carbonyl Complexes

  • Chapter
  • First Online:
The Jahn-Teller Effect

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 97))

Abstract

Transition metal carbonyl complexes exhibit a wide-range of vibronic coupling induced phenomena, some of which has only recently begun to be understood via state-of-the-art spectroscopic, as well as theoretical and computational investigations. Historically the Jahn–Teller effect has been used to explain structural information such as ground-state geometries and the lowest energy spin-state. We will review important early work on understanding structural aspects of binary transition metal carbonyl complexes, and then move on to discuss the most recent time-resolved work, and computational studies aimed at explaining these results. The recent time-resolved experiments of have shown that a variety of unexpected features arise from photodissociation of metal carbonyls of the first, second and third rows of the periodic table, and also multiply metal–metal bonded carbonyls. These experiments show that an unsaturated metal carbonyl is produced in the singlet spin-state; the radiationless relaxation being so fast as to preclude a spin–orbit induced change to the high-spin manifold. Such unsaturated metal carbonyls may have accessible geometries that are Jahn–Teller degenerate, and these conical intersections are believed to be the key to ultrafast radiationless decay. This is an exciting development as these systems naturally bring together aspects of the Jahn–Teller effect with photochemistry. Such low-spin degeneracies are not normally found in classical inorganic chemistry; here they are reached photochemically, the exact mechanism from excitation to photoproduct still not fully understood. In relation to modern computational work we discuss current state-of-the-art computational methodologies required to correctly describe metal–carbonyl bonding in the ground and excited states, the resulting potential energy surfaces, and mechanisms of ultrafast photodissociation and subsequent radiationless decay (including conical intersections). We discuss in detail the Jahn–Teller effect in relation to the photochemistry of Cr(CO)6, and Fe(CO)5. Throughout these examples useful group theoretical tools such as the epikernel principle will be exemplified. Several new results will be included at various appropriate points throughout this tutorial review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.A. Albright, J.K. Burdett, M.H. Whangbo, Orbital Interactions in Chemistry (Wiley, New York, 1985)

    Google Scholar 

  2. W. Fuss, S.A. Trushin, W.E. Schmid, Res. Chem. Int. 27, 447 (2001)

    Article  CAS  Google Scholar 

  3. S.K. Kim, S. Pedersen, A.H. Zewail, Chem. Phys. Lett. 233, 500 (1995)

    Article  CAS  Google Scholar 

  4. L. Mond, C. Langer, F. Quincke, J. Chem. Soc. 57, 749 (1890)

    CAS  Google Scholar 

  5. W. Rudalt, U. Hofmann, Z. Phys. Chem. 28, 351 (1935)

    Google Scholar 

  6. L.O. Brockway, R.V.G. Ewens, M.W. Lister, Trans. Faraday Soc. 34, 1350 (1938)

    Article  CAS  Google Scholar 

  7. A. Whitaker, J.W. Jeffery, Acta Cryst. 23, 977 (1967)

    Article  CAS  Google Scholar 

  8. R.V.G. Ewens, M.W. Lister, Trans. Faraday Soc. 35, 681 (1939)

    Article  CAS  Google Scholar 

  9. A.W. Hanson, Acta Cryst. 15, 930 (1962)

    Article  CAS  Google Scholar 

  10. L.F. Dahl, R.E. Rundle, J. Chem. Phys. 26, 1751 (1957)

    Article  CAS  Google Scholar 

  11. S.F.A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd edn. (Wiley, New York, 2007)

    Google Scholar 

  12. J. Donohue, A. Caron, Acta Cryst. 17, 6 (1964)

    Google Scholar 

  13. D. Braga, F. Grepioni, A.G. Orpen, Organometallics 12, 1481 (1993)

    Article  CAS  Google Scholar 

  14. A.J. Dixon, M.A. Healy, P.M. Hodges, B.D. Moore, M. Poliakoff, M.B. Simpson, J.J. Turner, M.A. West, J. Chem. Soc. - Faraday Trans. 82, 2083 (1986)

    Article  CAS  Google Scholar 

  15. N. Leadbeater, Coord. Chem. Rev. 188, 35 (1999)

    Article  CAS  Google Scholar 

  16. A.P. Garrat, H.W. Thompson, J. Chem. Soc., 1817 (1934)

    Google Scholar 

  17. R.K. Sheline, K.S. Pitzer, J. Am. Chem. Soc. 72, 1107 (1950)

    Article  CAS  Google Scholar 

  18. F.A. Cotton, G. Wilkinson, J. Am. Chem. Soc. 79, 752 (1957)

    Article  CAS  Google Scholar 

  19. B.I. Swanson, L.H. Jones, R.R. Ryan, J. Mol. Spec. 45, 324 (1973)

    Article  CAS  Google Scholar 

  20. S.P. Church, F.W. Grevels, H. Hermann, K. Schaffner, Inorg. Chem. 24, 418 (1985)

    Article  CAS  Google Scholar 

  21. S.P. Church, F.W. Grevels, H. Hermann, K. Schaffner, J. Chem. Soc. - Chem. Comm., 30 (1985)

    Google Scholar 

  22. S.P. Church, F.W. Grevels, H. Hermann, J.M. Kelly, W.E. Klotzbucher, K. Schaffner, J. Chem. Soc. - Chem. Comm., 594 (1985)

    Google Scholar 

  23. I.W. Stolz, G.R. Dobson, R.K. Sheline, J. Am. Chem. Soc. 84, 3589 (1962)

    Article  CAS  Google Scholar 

  24. I.W. Stolz, G.R. Dobson, R.K. Sheline, Inorg. Chem. 2, 1264 (1963)

    Article  CAS  Google Scholar 

  25. M.A. Graham, M. Poliakof, J.J. Turner, J. Chem. Soc. A - Inorg. Phys. Theo. 2939 (1971)

    Google Scholar 

  26. J.D. Black, P.S. Braterman, J. Am. Chem. Soc. 97, 2908 (1975)

    Article  CAS  Google Scholar 

  27. R.N. Perutz, J.J. Turner, J. Am. Chem. Soc. 97, 4791 (1975)

    Article  CAS  Google Scholar 

  28. R.N. Perutz, J.J. Turner, Inorg. Chem. 14, 262 (1975)

    Article  CAS  Google Scholar 

  29. J.K. Burdett, M.A. Graham, R.N. Perutz, M. Poliakoff, A.J. Rest, J.J. Turner, R.F. Turner, J. Am. Chem. Soc. 97, 4805 (1975)

    Article  CAS  Google Scholar 

  30. T.A. Seder, S.P. Church, E. Weitz, J. Am. Chem. Soc. 108, 4721 (1986)

    Article  CAS  Google Scholar 

  31. T.A. Seder, A.J. Ouderkirk, E. Weitz, J. Chem. Phys. 85, 1977 (1986)

    Article  CAS  Google Scholar 

  32. H.B. Gray, N.A. Beach, J. Am. Chem. Soc. 85, 2922 (1963)

    Article  CAS  Google Scholar 

  33. M.A. Graham, A.J. Rest, J.J. Turner, J. Organomet. Chem. 24, C54 (1970)

    Article  CAS  Google Scholar 

  34. N.A. Beach, H.B. Gray, J. Am. Chem. Soc. 90, 5713 (1968)

    Article  CAS  Google Scholar 

  35. R.A. Levenson, H.B. Gray, G.P. Ceasar, J. Am. Chem. Soc. 92, 3653 (1970)

    Article  CAS  Google Scholar 

  36. J.L. Hubbard, D.L. Lichtenberger, J. Chem. Phys. 75, 2560 (1981)

    Article  CAS  Google Scholar 

  37. I.M. Waller, J.W. Hepburn, J. Chem. Phys. 88, 6658 (1988)

    Article  CAS  Google Scholar 

  38. A.F. Schreiner, T.L. Brown, J. Am. Chem. Soc. 90, 3366 (1968)

    Article  CAS  Google Scholar 

  39. R.A. Levenson, H.B. Gray, J. Am. Chem. Soc. 97, 6042 (1975)

    Article  CAS  Google Scholar 

  40. C.E. Housecroft, K. Wade, B.C. Smith, Chem. Comm., 765 (1978)

    Google Scholar 

  41. C.E. Housecroft, K. Wade, B.C. Smith, J. Organomet. Chem. 170, C1 (1979)

    Article  CAS  Google Scholar 

  42. T. Ziegler, J. Autschbach, Chem. Rev. 105 (2005)

    Google Scholar 

  43. M.J. Paterson, P.A. Hunt, M.A. Robb, O. Takahashi, J. Phys. Chem. A 106, 10494 (2002)

    Article  CAS  Google Scholar 

  44. C. Daniel, M. Benard, A. Dedieu, R. Wiest, A. Veillard, J. Phys. Chem. 88, 4805 (1984)

    Article  CAS  Google Scholar 

  45. A. Veillard, A. Strich, C. Daniel, P.E.M. Siegbahn, Chem. Phys. Lett. 141, 329 (1987)

    Article  CAS  Google Scholar 

  46. A. Marquez, C. Daniel, J.F. Sanz, J. Phys. Chem. 96, 121 (1992)

    Article  CAS  Google Scholar 

  47. T. Ziegler, V. Tschinke, C. Ursenbach, J. Am. Chem. Soc. 109, 4825 (1987)

    Article  CAS  Google Scholar 

  48. L.A. Barnes, M. Rosi, C.W. Bauschlicher, J. Chem. Phys. 94, 2031 (1991)

    Article  CAS  Google Scholar 

  49. A.W. Ehlers, G. Frenking, J. Chem. Soc. - Chem. Comm., 1709 (1993)

    Google Scholar 

  50. K.E. Lewis, D.M. Golden, G.P. Smith, J. Am. Chem. Soc. 106, 3905 (1984)

    Article  CAS  Google Scholar 

  51. N. Rosch, M. Kotzian, H. Jorg, H. Schroder, B. Rager, S. Metev, J. Am. Chem. Soc. 108, 4238 (1986)

    Article  Google Scholar 

  52. M.F. Zhou, L. Andrews, C.W. Bauschlicher, Chem. Rev. 101, 1931 (2001)

    Article  CAS  Google Scholar 

  53. E. Weitz, J. Phys. Chem. 91, 3945 (1987)

    Article  CAS  Google Scholar 

  54. C. Daniel, Coord. Chem. Rev. 238, 143 (2003)

    Article  CAS  Google Scholar 

  55. M. Poliakoff, E. Weitz, Acc. Chem. Res. 20, 408 (1987)

    Article  CAS  Google Scholar 

  56. M. Kotzian, N. Rosch, H. Schroder, M.C. Zerner, J. Am. Chem. Soc. 111, 7687 (1989)

    Article  CAS  Google Scholar 

  57. L. Banares, T. Baumert, M. Bergt, B. Kiefer, G. Gerber, Chem. Phys. Lett. 267, 141 (1997)

    Article  CAS  Google Scholar 

  58. O. Rubner, V. Engel, Chem. Phys. Lett. 293, 485 (1998)

    Article  CAS  Google Scholar 

  59. O. Rubner, T. Baumert, M. Bergt, B. Kiefer, G. Gerber, V. Engel, Chem. Phys. Lett. 316, 585 (2000)

    Article  CAS  Google Scholar 

  60. H. Ihee, J. Cao, A.H. Zewail, Chem. Phys. Lett. 281, 10 (1997)

    Article  CAS  Google Scholar 

  61. H. Ihee, J.M. Cao, A.H. Zewail, Angew. Chem. Int. Ed. 40, 1532 (2001)

    Article  CAS  Google Scholar 

  62. M.J. Paterson, L. Blancafort, S. Wilsey, M.A. Robb, J. Phys. Chem. A 106, 11431 (2002)

    Article  CAS  Google Scholar 

  63. M.J. Paterson, M.A. Robb, L. Blancafort, A.D. DeBellis, J. Am. Chem. Soc. 126, 2912 (2004)

    Article  CAS  Google Scholar 

  64. M.J. Paterson, M.A. Robb, L. Blancafort, A.D. DeBellis, J. Phys. Chem. A 109, 7527 (2005)

    Article  CAS  Google Scholar 

  65. B. Davies, A. McNeish, M. Poliakoff, J.J. Turner, J. Am. Chem. Soc. 99, 7573 (1977)

    Article  CAS  Google Scholar 

  66. M. Poliakoff, A. Ceulemans, J. Am. Chem. Soc. 106, 50 (1984)

    Article  CAS  Google Scholar 

  67. S.A. Trushin, W. Fuβ, K.L. Kompa, W.E. Schmid, J. Phys. Chem. A 104, 1997 (2000)

    Article  CAS  Google Scholar 

  68. M. Poliakoff, J.J. Turner, Angew. Chem. Int. Ed. 40, 2809 (2001)

    Article  CAS  Google Scholar 

  69. W. Fuβ, S.A. Trushin, W.E. Schmid, Res. Chem. Int. 27, 447 (2001)

    Article  Google Scholar 

  70. S.A. Trushin, W. Fuβ, W.E. Schmid, Chem. Phys. 259, 313 (2000)

    Article  CAS  Google Scholar 

  71. S.A. Trushin, W. Fuβ, W.E. Schmid, K.L. Kompa, J. Phys. Chem. A 102, 4129 (1998)

    Article  CAS  Google Scholar 

  72. S.A. Trushin, K. Kosma, W. Fuβ, W.E. Schmid, Chem. Phys. 347, 309 (2008)

    Article  CAS  Google Scholar 

  73. N. Ben Arnor, S. Villaume, D. Maynau, C. Daniel, Chem. Phys. Lett. 421, 378 (2006)

    Article  CAS  Google Scholar 

  74. C. Daniel, Curr. Chem. 241, 119 (2004)

    CAS  Google Scholar 

  75. O. Kuhn, M.R.D. Hachey, M.M. Rohmer, C. Daniel, Chem. Phys. Lett. 322, 199 (2000)

    Article  CAS  Google Scholar 

  76. K. Pierloot, E. Tsokos, L.G. Vanquickenborne, J. Phys. Chem. 100, 16545 (1996)

    Article  CAS  Google Scholar 

  77. A. Rosa, E.J. Baerends, S.J.A. van Gisbergen, E. van Lenthe, J.A. Groeneveld, J.G. Snijders, J. Am. Chem. Soc. 121, 10356 (1999)

    Article  CAS  Google Scholar 

  78. A. Rosa, G. Ricciardi, E.J. Baerends, D.J. Stufkens, Inorg. Chem. 34, 3425 (1995)

    Article  CAS  Google Scholar 

  79. A. Rosa, G. Ricciardi, E.J. Baerends, D.J. Stufkens, Inorg. Chem. 35, 2886 (1996)

    Article  CAS  Google Scholar 

  80. O. Rubner, V. Engel, M.R. Hachey, C. Daniel, Chem. Phys. Lett. 302, 489 (1999)

    Article  CAS  Google Scholar 

  81. S.J.A. van Gisbergen, J.A. Groeneveld, A. Rosa, J.G. Snijders, E.J. Baerends, J. Phys. Chem. A 103, 6835 (1999)

    Article  CAS  Google Scholar 

  82. S. Villaume, A. Strich, C. Daniel, S.A. Perera, R.J. Bartlett, Phys. Chem. Chem. Phys. 9, 6115 (2007)

    Article  CAS  Google Scholar 

  83. C. Pollak, A. Rosa, E.J. Baerends, J. Am. Chem. Soc. 119, 7324 (1997)

    Article  CAS  Google Scholar 

  84. O. Christiansen, Theor. Chem. Acc. 116, 106 (2006)

    Article  CAS  Google Scholar 

  85. M.J. Paterson, O. Christiansen, F. Pawłowski, P. Jørgensen, C. Hättig, T. Helgaker, P. Sałek, J. Chem. Phys. 124 (2006)

    Google Scholar 

  86. O. Christiansen, H. Koch, F. Jørgensen, J. Chem. Phys. 105, 1451 (1996)

    Article  CAS  Google Scholar 

  87. The atomic natural orbital basis (ANO-3) for iron (6 contracted sets of s functions, 4 contracted sets of p functions, 3 contracted sets of d functions, 1 contracted set of f functions, and the cc-pVDZ basis on carbon and oxygen.

    Google Scholar 

  88. M. Johnsen, M.J. Paterson, J. Arnberg, O. Christiansen, C.B. Nielsen, M. Jørgensen, P.R. Ogilby, Phys. Chem. Chem. Phys. 10, 1177 (2008)

    Article  CAS  Google Scholar 

  89. J. Arnberg, M.J. Paterson, M. Jørgensen, O. Christiansen, P.R. Ogilby, J. Phys. Chem. A 111, 5756 (2007)

    Article  CAS  Google Scholar 

  90. J. Arnberg, A. Jiménez-Banzo, M.J. Paterson, S. Nonell, J. Borrell, O. Christiansen, P.R. Ogilby, J. Am. Chem. Soc. 129, 5188 (2007)

    Article  CAS  Google Scholar 

  91. G.A. Worth, G. Welch, M.J. Paterson, Mol. Phys. 104, 1095 (2006)

    Article  CAS  Google Scholar 

  92. B.J. Persson, B.O. Roos, K. Pierloot, J. Chem. Phys. 101, 6810 (1994)

    Article  Google Scholar 

  93. M.J. Paterson, M.J. Bearpark, M.A. Robb, L. Blancafort, Journal of Chemical Physics 121, 11562 (2004)

    Article  CAS  Google Scholar 

  94. M.J. Paterson, M.J. Bearpark, M.A. Robb, L. Blancafort, G.A. Worth, Phys. Chem. Chem. Phys. 7, 2100 (2005)

    Article  CAS  Google Scholar 

  95. H.A. Jahn, E. Teller, Proc. Roy. Soc. A 161, 220 (1937)

    Article  CAS  Google Scholar 

  96. P.W. Atkins, M.S. Child, C.S.G. Phillips, Tables for Group Theory (Oxford University Press, Oxford, 1970)

    Google Scholar 

  97. A. Ceulemans, L.G. Vanquickenborne, Struct. Bond. 71, 125 (1989)

    CAS  Google Scholar 

  98. I.B. Bersuker, Chem. Rev. 101, 1067 (2001)

    Article  CAS  Google Scholar 

  99. G.A. Worth, H.D. Meyer, L.S. Cederbaum, in Conical Intersections, ed. by W. Domcke, D.R. Yarkony, H. Koppel (World Scientific, Singapore, 2004), p. 573.

    Google Scholar 

  100. M.J. Bearpark, L. Blancafort, M.A. Robb, Mol. Phys. 100, 1735 (2002)

    Article  CAS  Google Scholar 

  101. I.B. Bersuker, The Jahn–Teller Effect (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  102. M.J. Paterson, N.P. Chatterton, G.S. McGrady, New. J. Chem. 28, 1434 (2004)

    Article  CAS  Google Scholar 

  103. N.B. Balabanov, K.A. Peterson, J. Chem. Phys. 123, 064107 (2005)

    Article  CAS  Google Scholar 

  104. G.A. Worth, L.S. Cederbaum, Ann. Rev. Phys. Chem. 55, 127 (2004)

    Article  CAS  Google Scholar 

  105. G.A. Worth, H.D. Meyer, H. Koppel, L.S. Cederbaum, I. Burghardt, Int. Rev. Phys. Chem. 27, 569 (2008)

    Article  CAS  Google Scholar 

  106. G.A. Worth, M.A. Robb, B. Lasorne, Mol. Phys. 106, 2077 (2008)

    Article  CAS  Google Scholar 

  107. M.H. Beck, A. Jackle, G.A. Worth, H.D. Meyer, Phys. Rep. 324, 1 (2000)

    Article  CAS  Google Scholar 

  108. J.P. Holland, R.N. Rosenfeld, J. Chem. Phys. 89, 7217 (1988)

    Article  CAS  Google Scholar 

  109. M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. Eckert-Maksic, H. Lischka, J. Photochem. Photobiol. A: Chem. 190, 228 (2007)

    Article  CAS  Google Scholar 

  110. O. Christiansen, J. Chem. Phys. 120, 2140 (2004)

    Article  CAS  Google Scholar 

  111. O. Christiansen, J. Kongsted, M.J. Paterson, J.M. Luis, J. Chem. Phys. 125, 214309 (2006)

    Article  CAS  Google Scholar 

  112. M.J. Paterson, O. Christiansen, F. Jensen, P.R. Ogilby, Photochem. Photobiol. 82, 1136 (2006)

    Article  CAS  Google Scholar 

  113. Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954)

    Article  CAS  Google Scholar 

  114. R. Meiswinkel, H. Köppel, Chem. Phys. Lett. 201, 449 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC for funding through grant EP/F01709X. We also thank Dr. Graham Worth for providing us an original version of Fig. 11.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McKinlay, R.G., Paterson, M.J. (2009). The Jahn–Teller Effect in Binary Transition Metal Carbonyl Complexes. In: Köppel, H., Yarkony, D., Barentzen, H. (eds) The Jahn-Teller Effect. Springer Series in Chemical Physics, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03432-9_11

Download citation

Publish with us

Policies and ethics