Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5486))

Included in the following conference series:

Abstract

Term-generic logic (TGL) is a first-order logic parameterized with terms defined axiomatically (rather than constructively), by requiring them to only provide generic notions of free variable and substitution satisfying reasonable properties. TGL has a complete Gentzen system generalizing that of first-order logic. A certain fragment of TGL, called Horn 2, possesses a much simpler Gentzen system, similar to traditional typing derivation systems of λ-calculi. Horn 2 appears to be sufficient for defining a whole plethora of λ-calculi as theories inside the logic. Within intuitionistic TGL, a Horn 2 specification of a calculus is likely to be adequate by default. A bit of extra effort shows adequacy w.r.t. classic TGL as well, endowing the calculus with a complete loose semantics.

Supported in part by NSF grants CCF-0448501, CNS-0509321 and CNS-0720512, by NASA contract NNL08AA23C, by the Microsoft/Intel funded Universal Parallel Computing Research Center at UIUC, and by several Microsoft gifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., et al.: Explicit substitutions. J. Funct. Program. 1(4), 375–416 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aczel, P.: Frege structures and the notions of proposition, truth and set. In: The Kleene Symposium, pp. 31–59. North Holland, Amsterdam (1980)

    Chapter  Google Scholar 

  3. Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2), 125–154 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Barendregt, H.P.: The Lambda Calculus. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  5. Birkhoff, G.: On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society 31, 433–454 (1935)

    Article  MATH  Google Scholar 

  6. Bruijn, N.: λ-calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indag. Math. 34(5), 381–392 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaconescu, R.: Institution-independent Model Theory. Birkhauser, Basel (2008)

    MATH  Google Scholar 

  8. Dowek, G., Hardin, T., Kirchner, C.: Binding logic: Proofs and models. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS, vol. 2514, pp. 130–144. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proc. 14th LICS Conf., pp. 193–202. IEEE, Los Alamitos (1999)

    Google Scholar 

  10. Gallier, J.H.: Logic for computer science. Foundations of automatic theorem proving. Harper & Row (1986)

    Google Scholar 

  11. Girard, J.-Y.: Une extension de l’interpretation de Gödel a l’analyse, et son application a l’elimination des coupure dans l’analyse et la theorie des types. In: Fenstad, J. (ed.) 2nd Scandinavian Logic Symposium, pp. 63–92. North Holland, Amsterdam (1971)

    Chapter  Google Scholar 

  12. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goguen, J., Meseguer, J.: Order-sorted algebra I. Theoretical Computer Science 105(2), 217–273 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gunter, C.A.: Semantics of Programming Languages. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  15. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. In: Proc. 2nd LICS Conf., pp. 194–204. IEEE, Los Alamitos (1987)

    Google Scholar 

  16. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Proc. 14th LICS Conf., pp. 204–213. IEEE, Los Alamitos (1999)

    Google Scholar 

  17. McDowell, R.C., Miller, D.A.: Reasoning with higher-order abstract syntax in a logical framework. ACM Trans. Comput. Logic 3(1), 80–136 (2002)

    Article  MathSciNet  Google Scholar 

  18. Meseguer, J.: General logics. In: Ebbinghaus, H.-D., et al. (eds.) Proceedings, Logic Colloquium 1987, pp. 275–329. North-Holland, Amsterdam (1989)

    Google Scholar 

  19. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Logic 51(1-2), 125–157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge (1996)

    Google Scholar 

  21. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI 1988, pp. 199–208. ACM Press, New York (1988)

    Google Scholar 

  22. Pitts, A.M.: Nominal logic: A first order theory of names and binding. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 219–242. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Popescu, A., Roşu, G.: Term-generic logic. Tech. Rep. Univ. of Illinois at Urbana-Champaign UIUCDCS-R-2009-3027 (2009)

    Google Scholar 

  24. Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Programming Symposium. LNCS, vol. 19, pp. 408–423. Springer, Heidelberg (1974)

    Chapter  Google Scholar 

  25. Roşu, G.: Extensional theories and rewriting. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1066–1079. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specifications and Formal Program Development. To appear in Cambridge University Press (Ask authors for current version at tarlecki@mimuw.edu.pl)

    Google Scholar 

  27. Sun, Y.: An algebraic generalization of Frege structures - binding algebras. Theoretical Computer Science 211(1-2), 189–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Popescu, A., Roşu, G. (2009). Term-Generic Logic. In: Corradini, A., Montanari, U. (eds) Recent Trends in Algebraic Development Techniques. WADT 2008. Lecture Notes in Computer Science, vol 5486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03429-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03429-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03428-2

  • Online ISBN: 978-3-642-03429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics