Integer Programming: Optimization and Evaluation Are Equivalent

  • James B. Orlin
  • Abraham P. Punnen
  • Andreas S. Schulz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5664)

Abstract

We show that if one can find the optimal value of an integer linear programming problem in polynomial time, then one can find an optimal solution in polynomial time. We also present a proper generalization to (general) integer programs and to local search problems of the well-known result that optimization and augmentation are equivalent for 0/1-integer programs. Among other things, our results imply that PLS-complete problems cannot have “near-exact” neighborhoods, unless PLS = P.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  2. 2.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  3. 3.
    Chakravarti, N., Wagelmans, A.P.M.: Calculation of stability radii for combinatorial optimization problems. Operations Research Letters 23, 1–7 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Crescenzi, P., Silvestri, R.: Relative complexity of evaluating the optimum cost and constructing the optimum for maximization problems. Information Processing Letters 33, 221–226 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, pp. 604–612 (2004)Google Scholar
  6. 6.
    Grötschel, M., Lovász, L.: Combinatorial optimization. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, ch. 28, vol. 2, pp. 1541–1597. Elsevier, Amsterdam (1995)Google Scholar
  7. 7.
    Gutin, G., Yeo, A., Zverovitch, A.: Exponential neighborhoods and domination analysis for the TSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and Its Variations, ch. 6, pp. 223–256. Kluwer, Dordrecht (2002)Google Scholar
  8. 8.
    Johnson, D.S.: The NP-completeness column: Finding needles in haystacks. ACM Transactions on Algorithms 3 (2007)Google Scholar
  9. 9.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? Journal of Computer and System Sciences 37, 79–100 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Krentel, M.W., Structure in locally optimal solutions, in Proceedings of the 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, NC, 1989, 216–221.Google Scholar
  11. 11.
    Orlin, J.B., Punnen, A.P., Schulz, A.S.: Approximate local search in combinatorial optimization. SIAM Journal on Computing 33, 1201–1214 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs (1982)MATHGoogle Scholar
  13. 13.
    Ramaswamy, R., Chakravarti, N.: Complexity of determining exact tolerances for min-sum and min-max combinatorial optimization problems, Working Paper WPS-247/95, Indian Institute of Management, Calcutta, India (1995)Google Scholar
  14. 14.
    Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM Journal on Computing 20, 56–87 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)MATHGoogle Scholar
  16. 16.
    Schulz, A.S.: On the relative complexity of 15 problems related to 0/1-integer programming. In: Cook, W.J., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, ch. 19, pp. 399–428. Springer, Berlin (2009)CrossRefGoogle Scholar
  17. 17.
    Schulz, A.S., Weismantel, R., Ziegler, G.M.: 0/1-integer programming: Optimization and augmentation are equivalent. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 473–483. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  18. 18.
    van Hoesel, S., Wagelmans, A.P.M.: On the complexity of postoptimality analysis of 0/1 programs. Discrete Applied Mathematics 91, 251–263 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • James B. Orlin
    • 1
  • Abraham P. Punnen
    • 2
  • Andreas S. Schulz
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Simon Fraser UniversitySurreyCanada

Personalised recommendations