Advertisement

Mixing Telerobotics and Virtual Reality for Improving Immersion in Artwork Perception

  • Luca Brayda
  • Nicolas Mollet
  • Ryad Chellali
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5670)

Abstract

This paper aims at presenting a framework to achieve a higher degree of telepresence in environments rich of artistic content using mobile robots. We develop a platform which allows a more immersive and natural interaction between an operator and a remote environment; we make use of a multi-robot system as the mean to physically explore such environment and we adopt virtual reality as an interface to abstract it. The visitor is thus able to exploit the virtual environment both for keeping the sense of direction and for accessing a high-resolution content, while the immersion is achieved through the robot sensors. This study represents a starting point for overcoming the limits of the current use of virtual technology associated with artistic content. Long-term results of such study can be applied to tele-didactics, remote tele-visits for impaired users and active man-machine cooperation for efficient tele-surveillance.

Keywords

Virtual Reality Mobile Robot Virtual Environment Virtual World Detail Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Warwick, K., Kelly, I., Goodhew, I., Keating, D.: Behaviour and learning in completely autonomous mobile robots. In: IEE Colloquium on Design and Development of Autonomous Agents, November 1995, pp. 7/1–7/4(1995)Google Scholar
  2. 2.
    Lidoris, G., Klasing, K., Bauer, A., Xu, T., Kuhnlenz, K., Wollherr, D., Buss, M.: The autonomous city explorer project: aims and system overview. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, 29 2007-November 2 2007, pp. 560–565 (2007)Google Scholar
  3. 3.
    Glasgow, J., Thomas, G., Pudenz, E., Cabrol, N., Wettergreen, D., Coppin, P.: Optimizing information value: Improving rover sensor data collection. IEEE Transactions on Systems, Man and Cybernetics, Part A 38(3), 593–604 (2008)CrossRefGoogle Scholar
  4. 4.
    Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R., Rashid, J., Seo, B., Cho, Y.: The peis-ecology project: Vision and results. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, September 2008, pp. 2329–2335 (2008)Google Scholar
  5. 5.
    Urbancsek, T., Vajda, F.: Internet telerobotics for multi-agent mobile microrobot systems - a new approach (2003)Google Scholar
  6. 6.
    Elfes, A., Dolan, J., Podnar, G., Mau, S., Bergerman, M.: Safe and efficient robotic space exploration with tele-supervised autonomous robots. In: Proceedings of the AAAI Spring Symposium, March 2006, pp. 104–113 (2006) (to appear)Google Scholar
  7. 7.
    Wertheimer, M.: Experimentelle studien ber das sehen von bewegung. Zeitschrift für Psychologie 61, 161–265 (1912)Google Scholar
  8. 8.
    Hickey, S., Manninen, T., Pulli, P.: Telereality - the next step for telepresence. In: Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics (SCI 2000), Florida, vol. 3, pp. 65–70 (2000)Google Scholar
  9. 9.
    Kheddar, A., Tzafestas, C., Blazevic, P., Coiffet, P.: Fitting teleoperation and virtual reality technologies towards teleworking (1998)Google Scholar
  10. 10.
    Tachi, S.: Real-time remote robotics-toward networked telexistence. IEEE Computer Graphics and Applications 18(6), 6–9 (1998)CrossRefGoogle Scholar
  11. 11.
    Eckhard, F., Jrgen, R., Marcel, B.: An open multi-agent control architecture to support virtual reality based man-machine interfaces. In: Sensor fusion and decentralized control in robotic systems, vol. 4571, pp. 219–229 (2001)Google Scholar
  12. 12.
    Zhai, S., Milgram, P.: A telerobotic virtual control system. In: Proceedings of SPIE, Boston. Cooperative Intelligent Robotics in Space II, vol. 1612, pp. 311–320 (1991)Google Scholar
  13. 13.
    Yang, X., Chen, Q.: Virtual reality tools for internet-based robotic teleoperation. In: DS-RT 2004: Proceedings of the 8th IEEE International Symposium on Distributed Simulation and Real-Time Applications, Washington, DC, USA, pp. 236–239. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  14. 14.
    Gerbaud, S., Mollet, N., Ganier, F., Arnaldi, B., Tisseau, J.: Gvt: a platform to create virtual environments for procedural training. In: IEEE VR 2008 (2008)Google Scholar
  15. 15.
    Monferrer, A., Bonyuet, D.: Cooperative robot teleoperation through virtual reality interfaces, p. 243. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  16. 16.
    Tiziani, E.: Musei moderni tra arte e multimedialitá (February 2006), http://musei-multimediali.splinder.com
  17. 17.
    Marco Deseriis, G.M.: Net.Art: l’arte della connessione. Shake Edizioni, CyberpunkLine (2003)Google Scholar
  18. 18.
    Quaranta, D.: Net.Art 1994-1998. Milano,Vita & Pensiero (2004)Google Scholar
  19. 19.
    Schraft, R.D., Graf, B., Traub, A., John, D.: A mobile robot platform for assistance and entertainment. Industrial Robot Journal, 252–253 (2000)Google Scholar
  20. 20.
    Nourbakhsh, I., Kunz, C., Willeke, T.: The mobot museum robot installations: A five year experiment. In: Proceedings of International Conference on Intelligent Robots and Systems (2003)Google Scholar
  21. 21.
    Kuno, Y., Sadazuka, K., Kawashima, M., Yamazaki, K., Yamazaki, A., Kuzuoka, H.: Museum guide robot based on sociological interaction analysis. In: CHI 2007: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 1191–1194. ACM, New York (2007), http://doi.acm.org/10.1145/1240624.1240804 CrossRefGoogle Scholar
  22. 22.
    Kobayashi, Y., Hoshi, Y., Hoshino, G., Kasuya, T., Fueki, M., Kuno, Y.: Museum guide robot with three communication modes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, September 2008, pp. 3224–3229 (2008)Google Scholar
  23. 23.
    Frontech, F.: Service robot enon (2004), http://www.frontech.fujitsu.com/en/forjp/robot/servicerobot/
  24. 24.
    Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox, D., Haehnel, D., Rosenberg, C., Roy, N., Schulte, J., Schulz, D.: Probabilistic algorithms and the interactive museum tour-guide robot minerva. International Journal of Robotics Research (2000) (to appear)Google Scholar
  25. 25.
    Thrun, S., Bücken, A., Burgard, W., Fox, D., Fröhlinghaus, T., Hennig, D., Hofmann, T., Krell, M., Schimdt, T.: Map learning and high-speed navigation in RHINO. In: Kortenkamp, D., Bonasso, R., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots. MIT/AAAI Press (1997)Google Scholar
  26. 26.
    Nourbakhsh, I., et al.: The design of a highly reliable robot for unmediated museum interaction. In: Proceedings of International Conference on Robotics and Automation (2005)Google Scholar
  27. 27.
    Mollet, N., Brayda, L., Chellali, R., Fontaine, J.: Virtual environments and scenario languages for advanced teleoperation of groups of real robots: Real case application. In: IARIA / ACHI 2009, Cancun (2009)Google Scholar
  28. 28.
    Mollet, N., Brayda, L., Chellali, R., Khelifa, B.: Standardization and integration in robotics: case of virtual reality tools. In: Cyberworlds, Hangzhou, China (2008)Google Scholar
  29. 29.
    Mollet, N., Chellali, R.: Virtual and augmented reality with head-tracking for efficient teleoperation of groups of robots. In: Cyberworlds, Hangzhou, China (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luca Brayda
    • 1
  • Nicolas Mollet
    • 1
  • Ryad Chellali
    • 1
  1. 1.TEleRobotics and Applications dept.Italian Institute of TechnologyGenoaItaly

Personalised recommendations