Advertisement

Pathfinding Strategy for Multiple Non-Playing Characters in 2.5 D Game Worlds

  • Jason MacGregor
  • Steve Leung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5670)

Abstract

This paper investigates and determines the optimal pathfinding strategy for non-playing characters (NPCs) in 2.5D game worlds. Three algorithms, Dijkstra’s, Best-first Search (BFS) and the A* algorithm using Manhattan distance, Euclidean distance and Diagonal distance heuristics, are tested under different interaction schemes and test environments consisting of different levels of obstacles. The result shows that the A* algorithm is the optimal algorithm under the Manhattan distance Heuristic. Our tests did not reveal significant difference among the cooperative, non-cooperative or competitive interaction schemes.

Keywords

Pathfinding Algorithms Game AI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1(1), 269–271 (1959), http://dx.doi.org/10.1007/BF01386390 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Morris, J.: Data Structures and Algorithms: Dijkstra’s Algorithm, http://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html
  3. 3.
    Wichmann, D.R., Wuensche, B.C.: Automated Route Finding on Digital Terrains. In: Proceedings of IVCNZ 2004, Akaroa, New Zealand, pp. 107–112 (2004)Google Scholar
  4. 4.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  5. 5.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science & Cybernetics 4(2), 100–107 (1968), http://dx.doi.org/10.1109/TSSC.1968.300136 CrossRefGoogle Scholar
  6. 6.
    Matthews, J.: Basic A* Pathfinding Made Simple. In: Rabin, S. (ed.) AI Game Programming Wisdom, pp. 105–113. Charles River Media, Inc., Rockland (2002)Google Scholar
  7. 7.
    Goodrich, M.T., Tamassia, R.: Data Structures and Algorithms in Java, 3rd edn. John Wiley & Sons, Inc., Chichester (2004)zbMATHGoogle Scholar
  8. 8.
    Silver, D.: Cooperative pathfinding. In: Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment conference, pp. 117–122. AAAI Press, Menlo Park (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jason MacGregor
    • 1
  • Steve Leung
    • 1
  1. 1.Athabasca UniversityAthabascaCanada

Personalised recommendations