MNF-based Photonic Components and Devices

  • Limin Tong
  • Michael Sumetsky
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


Optical fiber based components and devices have been very successful in the past 30 years and will surely continue to thrive in a variety of applications including optical communications, optical sensing, power delivery and nonlinear optics[1-3]. With increasing requirements for higher performance, wider applicability and lower energy consumption, there is a strong demand for the miniaturization of fiber-optic components or devices. When operated on a smaller spatial scale, a photonic circuit can circulate, process and respond to optical signals on a smaller time scale. Only at wavelength or subwavelength size does the photonic structure manifest evident near-field features that can be utilized for interlinking and processing optical signals highly efficiently. For example, it was estimated that to reach an optical data transmission rate as high as 10 Tb/s, the size of photonic matrix switching devices should be reduced to 100-nm scale[4]. At the same time, to perform a given function that relies on a certain kind of light-matter interaction, usually less energy is required when smaller quantities of matter are involved. Optical MNFs featured at subwavelength scale, provide a number of interesting properties such as tight confinement, high fractional evanescent fields, large and manageable waveguide dispersion that are highly desirable for functionalizing fiber-optic circuits with great versatility on a micro/nanoscale[5-7]. At the same time, taper-drawn MNFs provide excellent compatibility with standard optical fiber systems.


Photonic Crystal Pump Power Transmission Spectrum Silica Aerogel Optical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. P. Bishnu, Fundamentals of Fibre Optics in Telecommunication and Sensor Systems, John Wiley & Sons, New York, 1993.Google Scholar
  2. 2.
    D. K. Mynbaev, L. L. Scheiner, Fiber-Optic Communications Technology, Prentice Hall, New York, 2001.Google Scholar
  3. 3.
    A. Mendez, T. F. Morse, Specialty Optical Fibers Handbook, Academic Press, Burlington, 2007.Google Scholar
  4. 4.
    T. Kawazoe, T. Yatsui, M. Ohtsu, Nanophotonics using optical near fields, J. Non-Cryst. Solids 352, 2492–2495 (2006).CrossRefGoogle Scholar
  5. 5.
    P. Domachuk, B. J. Eggleton, Photonics: Shrinking optical fibres, Nature Mater. 3, 85–86 (2004).CrossRefGoogle Scholar
  6. 6.
    L. M. Tong, J. Y. Lou, E. Mazur, Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Opt. Express 12, 1025–1035 (2004).CrossRefGoogle Scholar
  7. 7.
    C. DeCusatis, Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking, 3rd ed., Academic Press, Burlington, 2008.Google Scholar
  8. 8.
    K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, F. Cerrina, Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction, Opt. Lett. 26, 1888–1890 (2001).CrossRefGoogle Scholar
  9. 9.
    P. Dumon, W. Bogaerts, V. Wiaux et al., Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography, IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).CrossRefGoogle Scholar
  10. 10.
    E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, R. M. Osgood, Self-phase-modulation in submicron silicon-on-insulator photonic wires, Opt. Express 14, 5524–5534 (2006).CrossRefGoogle Scholar
  11. 11.
    J. D. Joannopoulos, P. R. Villeneuve, S. H. Fan, Photonic crystals: Putting a new twist on light, Nature 386, 143–149 (1997).CrossRefGoogle Scholar
  12. 12.
    F. R. Yang, K. P. Ma, Y. X. Qian, T. Itoh, A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure, IEEE Trans. Microwave Theory Techniques 47, 2092–2098 (1999).CrossRefGoogle Scholar
  13. 13.
    A. Birner, R. B. Wehrspohn, U. M. Gosele, K. Busch, Silicon-based photonic crystals, Adv. Mater. 13, 377–388 (2001).CrossRefGoogle Scholar
  14. 14.
    S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, J. M. Hvam, Waveguiding in surface plasmon polariton band gap structures, Phys. Rev. Lett. 86, 3008–3011 (2001).CrossRefGoogle Scholar
  15. 15.
    S. A. Maier, M. L. Brongersma, P. G. Kik et al., Plasmonics-A route to nanoscale Optical devices, Adv. Mater. 13, 1501–1505 (2001).CrossRefGoogle Scholar
  16. 16.
    S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2, 229–232 (2003).CrossRefGoogle Scholar
  17. 17.
    M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P. D. Yang, Nanoribbon waveguides for subwavelength photonics integration, Science 305, 1269–1273 (2004).CrossRefGoogle Scholar
  18. 18.
    C. J. Barrelet, A. B. Greytak, C. M. Lieber, Nanowire photonic circuit elements, Nano Lett. 4, 1981–1985 (2004).CrossRefGoogle Scholar
  19. 19.
    D. J. Sirbuly, M. Law, P. Pauzauskle, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, P. Yang, Optical routing and sensing with nanowire assemblies, Proc. Natl. Acad. Sci. U.S.A. 102, 7800–7805 (2005).CrossRefGoogle Scholar
  20. 20.
    L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Shen, I. Maxwell, E. Mazur, Subwavelength diameter silica wires for low-loss optical wave guiding, Nature 426, 816–819 (2003).CrossRefGoogle Scholar
  21. 21.
    G. Brambilla, E. Koizumi, X. Feng, D. J. Richardson, Compound-glass optical nanowires, Electron. Lett. 41, 400–402 (2005).CrossRefGoogle Scholar
  22. 22.
    L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, Z. Z. Ye, Photonic nanowires directly drawn from bulk glasses, Opt. Express 14, 82–87 (2006).CrossRefGoogle Scholar
  23. 23.
    S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Ishan, M. M. Crain, K. M. Walsh, R. M. Cohn. Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers, Nano Lett. 4, 1931–1937 (2004).CrossRefGoogle Scholar
  24. 24.
    H. Q. Liu, J. B. Edel, L. M. Bellan, H. G. Craighead, Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots, Small 2, 495–499 (2006).CrossRefGoogle Scholar
  25. 25.
    G. Brambilla, V. Finazzi, D. J. Richardson, Ultra-low-loss optical fiber nanotapers, Opt. Express 12, 2258–2263 (2004).CrossRefGoogle Scholar
  26. 26.
    S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, Supercontinuum generation in submicron fibre waveguides, Opt. Express 12, 2864–2869 (2004).CrossRefGoogle Scholar
  27. 27.
    L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, E. Mazur, Assembly of silica nanowires on silica aerogels for microphotonic devices, Nano Lett. 5, 259–262 (2005).CrossRefGoogle Scholar
  28. 28.
    J. Y. Lou, L. M. Tong, Z. Z. Ye, Dispersion shifts in optical nanowires with thin dielectric coatings, Opt. Express 14, 6993–6998 (2006).CrossRefGoogle Scholar
  29. 29.
    F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, Polymer single-nanowire optical sensors, Nano Lett. 8, 2757–2761 (2008).CrossRefGoogle Scholar
  30. 30.
    L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, L. M. Tong, Fast detection of humidity with a subwavelength diameter fiber taper coated with gelatin film, Opt. Express 16, 13349–13353 (2008).CrossRefGoogle Scholar
  31. 31.
    A. C. Pierre, G. M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev. 102, 4243–4266 (2002).CrossRefGoogle Scholar
  32. 32.
    Y. K. Akimov, Fields of application of aerogels (Review), Instrum. Exp. Technol. 46, 287–299 (2003).CrossRefGoogle Scholar
  33. 33.
    L. M. Tong, E. Mazur, Glass nanofibers for micro-and nano-scale photonic devices, J. Non-cryst. Solids 354, 1240–1244 (2008).CrossRefGoogle Scholar
  34. 34.
    Z. Ma, S. S. Wang, Q. Yang, L. M. Tong, Near-field characterization of optical micro/nanofibers, Chin. Phys. Lett. 24, 3006–3008 (2007).CrossRefGoogle Scholar
  35. 35.
    Y. H. Li, L. M. Tong, Mach-Zehnder interferometers assembled with optical microfibers or nanofibers, Opt. Lett. 33, 303–305 (2008).CrossRefGoogle Scholar
  36. 36.
    G. Vienne, Y. H. Li, L. M. Tong, Microfiber resonator in polymer matrix, IEICE Trans. Electron. E90C, 415–421 (2007).CrossRefGoogle Scholar
  37. 37.
    F. Xu, G. Brambilla, Embedding optical microfiber coil resonators in Teflon, Opt. Lett. 32, 2164–2166 (2007).CrossRefGoogle Scholar
  38. 38.
    G. Vienne, Y. H. Li, L. M. Tong, Effect of host polymer on microfiber resonator, IEEE Photonic. Technol. Lett. 19, 1386–1388 (2007).CrossRefGoogle Scholar
  39. 39.
    M. Sumetsky, R. S. Windeler, Y. Dulashko, X. Fan, Optical liquid ring resonator sensor, Opt. Express 15, 14376–14381 (2007).CrossRefGoogle Scholar
  40. 40.
    F. Xu, V. Pruneri, V. Finazzi, G. Brambilla An embedded optical nanowire loop resonator refractometric sensor, Opt. Express 16, 1062–1067 (2008).CrossRefGoogle Scholar
  41. 41.
    F. Xu, G. Brambilla, Demonstration of a refractometric sensor based on optical microfiber coil resonator, Appl. Phys. Lett. 92, 101126 (2008).CrossRefGoogle Scholar
  42. 42.
    R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, R. M. Osgood, A study of high-index-contrast 90 degree waveguide bend structures, Opt. Express 8, 517–528 (2001).CrossRefGoogle Scholar
  43. 43.
    H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw Hill, New York, 1989.Google Scholar
  44. 44.
    R. G. Hunsperger, Integrated Optics, Springer-Verlag, New York, 2002.Google Scholar
  45. 45.
    J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995.zbMATHGoogle Scholar
  46. 46.
    A. Chutinan, S. Noda, Waveguides and waveguide bends in two-dimensional photonic crystal slabs, Phys. Rev. B 62, 4488–4492 (2000).Google Scholar
  47. 47.
    J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, U. Oesterle, Appl. Phys. Lett. 79, 3579 (2001).CrossRefGoogle Scholar
  48. 48.
    M. Augustin, H. J. Fuchs, D. Schelle, E. B. Kley, S. Nolte, A. Tünnermann, R. Iliew, C. Etrich, U. Peschel, F. Lederer, High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices, Appl. Phys. Lett. 84, 663–665 (2004).CrossRefGoogle Scholar
  49. 49.
    G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, P. S. Rusell, Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers, Opt. Lett. 26, 1137–1139 (2001).CrossRefGoogle Scholar
  50. 50.
    K. J. Huang, S. Y. Yang, L. M. Tong, Modeling of evanescent coupling between two parallel optical nanowires, Appl. Opt. 46, 1429–1434 (2007).CrossRefGoogle Scholar
  51. 51.
    G. B. Hocker, Fiber-optic sensing of pressure and temperature, Appl. Opt. 18, 1445–1448 (1979).CrossRefGoogle Scholar
  52. 52.
    S. J. Spammer, P. L. Swart, A. Booysen, Interferometric distributed optical-fiber sensor, Appl. Opt. 35, 4522–4525 (1996).CrossRefGoogle Scholar
  53. 53.
    S. Nakamura, K. Tajima, N. Hamao, Y. Sugimoto, High-speed all-optical switching experiment in Mach-Zehnder configuration using GaAs waveguide, Appl. Phys. Lett. 62, 925–927 (1993).CrossRefGoogle Scholar
  54. 54.
    F. Rehouma, W. Elflein, D. Persegol, A. Kevorkian, G. Clauss, P. Benech, R. Rimet, Improved structures for evanescent wave sensors, Appl. Phys. Lett. 66, 1461–1462 (1995).CrossRefGoogle Scholar
  55. 55.
    C. Wu, P. Lin, R. Huang, W. Chao, M. M. H. Lee, Design optimization for micromachined low power Mach-Zehnder thermo-optic switch, Appl. Phys. Lett. 89, 121121 (2006).CrossRefGoogle Scholar
  56. 56.
    M. Kuznetsov, Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems, J. Lightwave Technol. 12, 226–230 (1994).CrossRefGoogle Scholar
  57. 57.
    P. Dainesi, A. Kung, M. Chabloz, A. Lagos, P. Fluckiger CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology, IEEE Photon. Technol. Lett. 12, 660–662 (2000).CrossRefGoogle Scholar
  58. 58.
    R. L. Espinola, M. C. Tsai, J. T. Yardley, R. M. Osgood Fast and low-power thermooptic switch on thin silicon-on-insulator, IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).CrossRefGoogle Scholar
  59. 59.
    W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator, Opt. Express 15, 17106–17113 (2007).CrossRefGoogle Scholar
  60. 60.
    M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yuhawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, Two-dimensional photonic crystal Mach-Zehnder interferometers, Appl. Phys. Lett. 84, 460–462 (2004).CrossRefGoogle Scholar
  61. 61.
    J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, B. H. Lee, Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings, Opt. Lett. 29, 346–348 (2004).CrossRefGoogle Scholar
  62. 62.
    B. Wang, G. P. Wang, Simulations of nanoscale interferometer and array focusing by metal heterowaveguides, Opt. Express 13, 10558–10563 (2005).CrossRefGoogle Scholar
  63. 63.
    P. Domachuk, C. Grillet, V. Ta’eed, E. Mägi, J. Bolger, B. J. Eggleton, L. E. Rodd, J. Cooper-White, Microfluid interferometer, Appl. Phys. Lett. 86, 024103 (2005).CrossRefGoogle Scholar
  64. 64.
    J. Y. Lou, L. M. Tong, Z. Z. Ye, Modeling of silica nanowires for optical sensing, Opt. Express 13, 2135–2140 (2005).CrossRefGoogle Scholar
  65. 65.
    J. Heebner, T. Ibrahim, R. Grover, Optical Microresonators: Theory, Fabrication, and Applications, Springer-Verlag, New York, 2007.Google Scholar
  66. 66.
    M. Sumetsky, Y. Dulashko, A. Hale, Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer, Opt. Express, 12, 3521–3531 (2004).CrossRefGoogle Scholar
  67. 67.
    C. Caspar, E. J. Bachus, Fibre-optics micro-ring-resonator with 2 mm diameter, Electron. Lett. 25, 1506–1508 (1989).CrossRefGoogle Scholar
  68. 68.
    M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, Optical microfiber loop resonator, Appl. Phys. Lett. 86, 161108 (2005).CrossRefGoogle Scholar
  69. 69.
    M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, The microfiber loop resonator: theory, experiment, and application, IEEE J. Lightwave Technol. 24, 242–250 (2006).CrossRefGoogle Scholar
  70. 70.
    X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, Demonstration of optical microfiber knot resonators, Appl. Phys. Lett. 88, 223501 (2006).CrossRefGoogle Scholar
  71. 71.
    X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, L. L. Hu, Demonstration of microfiber knot laser, Appl. Phys. Lett. 89, 143513 (2006).CrossRefGoogle Scholar
  72. 72.
    X. S. Jiang, Q. H. Song, L. Xu, J. Fu, L. M. Tong, Microfiber knot dye laser based on the evanescent-wave-coupled gain, Appl. Phys. Lett. 90, 233501 (2007).CrossRefGoogle Scholar
  73. 73.
    G. Bourdon, G. Alibert, A. Beguin, B. Bellman, E. Guiot, Ultralow Loss Ring Resonators Using 3.5% Index-Contrast Ge-Doped Silica Waveguides, IEEE Photon. Technol. Lett. 15, 709–711 (2003).CrossRefGoogle Scholar
  74. 74.
    B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, Very High-Order Microring Resonator Filters for WDM Applications, IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).CrossRefGoogle Scholar
  75. 75.
    J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, H. Kurz, Ultrahigh-quality-factor silicon-on-insulator microring resonator, Opt. Lett. 29, 2861–2863 (2004).CrossRefGoogle Scholar
  76. 76.
    M. Sumetsky, Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators, IEEE J. Lightwave Technol. 26, 21–27 (2008).CrossRefGoogle Scholar
  77. 77.
    F. Xu, G. Brambilla, Manufacture of 3-D Microfiber Coil Resonators, IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).CrossRefGoogle Scholar
  78. 78.
    M. Sumetsky, Y. Dulashko, M. Fishteyn, Demonstration of a multi-turn microfiber coil resonator, In Postdeadline papers, Proceedings of Optical Fiber Communication conference 2007, paper PDP46, Anaheim, 2007.Google Scholar
  79. 79.
    F. Xu, G. Brambilla, Embedding optical microfiber coil resonators in Teflon, Opt. Lett. 32, 2164–2166 (2007).CrossRefGoogle Scholar
  80. 80.
    T. Erdogan, Cladding-mode resonances in short-and long-period fiber grating filters, J. Opt. Soc. Am. A 14, 1760–1773 (1997).CrossRefGoogle Scholar
  81. 81.
    P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter, IEEE Photon. Technol. Lett. 9, 1343–1345 (1997).CrossRefGoogle Scholar
  82. 82.
    H. S. Kim, S. H. Yun, I. K. Wwang, B. Y. Kim, All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile, Opt. Lett. 22, 1476–1478 (1997).CrossRefGoogle Scholar
  83. 83.
    Y. Chen, Z. Ma, Q. Yang, L. M. Tong, Compact optical short-pass filters based on microfibers, Opt. Lett. 33, 2565–2567 (2008).Google Scholar
  84. 84.
    X. S. Jiang, Y. Chen, G. Vienne, L. M. Tong, All-fiber add-drop filters based on microfiber knot resonators, Opt. Lett. 32, 1710–1712 (2007).CrossRefGoogle Scholar
  85. 85.
    K. Morishita, Optical fiber devices using dispersive materials, J. Lightwave Technol. 7, 198–201 (1989).CrossRefGoogle Scholar
  86. 86.
    J. W. Yu, K. Oh, New in-line fiber band pass filters using high silica dispersive optical fibers, Opt. Commun. 204, 111–118 (2002).Google Scholar
  87. 87.
    N. Chen, S. Chi, S. Tseng, An efficient local fundamental-mode cutoff for thermo-optic tunable Er3+-doped fiber ring laser, Opt. Express 13, 7250–7255 (2005).CrossRefGoogle Scholar
  88. 88.
    K. Morishita, Bandpass and band-rejection filters using dispersive fibers, J. Lightwave Technol. 7, 816–819 (1989).CrossRefGoogle Scholar
  89. 89.
    N. Chen, S. Chi, S. Tseng, Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay, Opt. Lett. 29, 2219–2221 (2004).CrossRefGoogle Scholar
  90. 90.
    J. Villatoro, D. Monzón-Hernández, D. Luna-Moreno, In-line tunable band-edge filter based on a single-mode tapered fiber coated with a dispersive material, IEEE Photon. Technol. Lett. 17, 1665–1667 (2005).CrossRefGoogle Scholar
  91. 91.
    B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J. P Laine, Microring resonator channel dropping filters, J. Lightwave Technol. 15, 998–1005 (1997).CrossRefGoogle Scholar
  92. 92.
    D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free-spectral range, Opt. Lett. 22, 1244–1246 (1997).CrossRefGoogle Scholar
  93. 93.
    B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, E. Ippen, Vertically coupled glass microring resonator channel dropping filers, IEEE Photon. Technol. Lett. 11, 215–217 (1999).CrossRefGoogle Scholar
  94. 94.
    S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Stato, Y. Kokubun, An Eight-channel add-drop filter using vertically coupled microring resonators over a cross grid, IEEE Photon. Technol. Lett. 11, 691–693 (1999).CrossRefGoogle Scholar
  95. 95.
    R. Grover, P. P. Absil, V. Van, J. V. Hryniewicz, B. E. Little, O. King, L. C. Calhoun, F. G. Johnson, P. T. Ho, Vertically coupled GaInAsP-InP microring resonators, Opt. Lett. 26, 506–508 (2001).CrossRefGoogle Scholar
  96. 96.
    K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, Microdisk tunable resonant filters and switches, IEEE Photon. Technol. Lett. 14, 828–830 (2002).CrossRefGoogle Scholar
  97. 97.
    M. Cai, G. Hunziker, K. Vahala, Fiber-optics add-drop device based on a silica microspere-whispering gallery mode system, IEEE Photon. Technol. Lett. 11, 686–687 (1999).CrossRefGoogle Scholar
  98. 98.
    M. Cai, K. Vahala, Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration, Opt. Lett. 25, 260–262 (2000).CrossRefGoogle Scholar
  99. 99.
    H. Rokhsari, K. Vahala, Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics, Phys. Rev. Lett. 92, 253905 (2004).CrossRefGoogle Scholar
  100. 100.
    S. Fan, P. R. Villeneuve, J. D. Joannopoulos, Channel Drop Tunneling through Localized States, Phys. Rev. Lett. 80, 960 (1998).CrossRefGoogle Scholar
  101. 101.
    M. J. Guy, S. V. Chernikov, J. R. Taylor, R. Kashyap, Low-loss fibre Bragg grating transmission filter based on a fibre polarization splitter, Electron. Lett. 30, 1512–1513 (1994).CrossRefGoogle Scholar
  102. 102.
    F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, An All-Fiber Dense-Wavelength-Division Multiplexer/Demultiplexer Using Photoim-printed Bragg Gratings, IEEE Photon. Technol. Lett. 7, 388–390 (1995).CrossRefGoogle Scholar
  103. 103.
    A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, A. Yariv, All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing, Opt. Lett. 23, 106–108 (1998).CrossRefGoogle Scholar
  104. 104.
    T. J. Kippenberg, S. M. Spillane, K. J. Vahala, Demonstration of ultra-high-Q small mode volume toroid microcavites on a chip, Appl. Phys. Lett. 85, 6113–6115 (2004).CrossRefGoogle Scholar
  105. 105.
    E. Mägi, H. Nguyen, B. Eggleton, Air-hole collapse and mode transitions in microstructured fiber photonic wires, Opt. Express 13, 453–459 (2005).CrossRefGoogle Scholar
  106. 106.
    Y. H. Li, G. Vienne, X. S. Jiang, X. Y. Pan, X. Liu, P. F. Gu, L. M. Tong, Modeling rare-earth doped microfiber ring lasers, Opt. Express 14, 7073–7086 (2006).CrossRefGoogle Scholar
  107. 107.
    L. F. Stokes, M. Chodorow, H. J. Shaw, All-single-mode fiber resonator, Opt. Lett. 7, 288–290 (1982).CrossRefGoogle Scholar
  108. 108.
    Anthony E. Siegman, Laser, Mill Valley, California, 1986.Google Scholar
  109. 109.
    B. E. A. Saleh, M. C. Teich, Fundamental of photonics, John Wiley & Sons, New York, 1991.CrossRefGoogle Scholar
  110. 110.
    E. Desurvire, Erbium-Doped Fiber Amplifiers, Wiley, New York, 1994.Google Scholar
  111. 111.
    Y. Jeong, J. Sahu, D. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power, Opt. Express 12, 6088–6092 (2004).CrossRefGoogle Scholar
  112. 112.
    W. L. Barnes, R. L. Laming, E. J. Tarbox, P. R. Morkel, Absorption and emission cross section of Er3+ doped silica fibers, IEEE J. Quantum Electron. 27, 1004–1010 (1991).CrossRefGoogle Scholar
  113. 113.
    X. Zou, H. Toratani, Evaluation of spectroscopic properties of Yb3+-doped glasses, Phys. Rev. B 52, 15889–15897 (1995).Google Scholar
  114. 114.
    M. Cai, O. Painter, K. J. Vahala, P. C. Sercel, Fiber-coupled microsphere laser, Opt. Lett. 25, 1430–1432 (2000).CrossRefGoogle Scholar
  115. 115.
    J. R. Buck, H. J. Kimble, Optimal sizes of dielectric microspheres for cavity QED with strong Coupling, Phys. Rev. A 67, 033806 (2003).Google Scholar
  116. 116.
    G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, D. N. Payne, Fabrication and Characterization of Yb3+: Er3+ Phosphosilicate Fibers for Lasers, J. Lightwave Technol. 16, 1990–2001 (1998).CrossRefGoogle Scholar
  117. 117.
    X. Peng, F. Song, S. B. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, L. Xu, Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser, Appl. Phys. Lett. 82, 1497–1499 (2003).CrossRefGoogle Scholar
  118. 118.
    X. Peng, F. Song, M. Kuwata-Gonokami, S. B. Jiang, N. Peyghambarian, Temperature dependence of the wavelength and threshold of fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser, Appl. Phys. Lett. 83, 5380–5382 (2003).CrossRefGoogle Scholar
  119. 119.
    S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, Whispering-gallery mode microdisk laser, Appl. Phys. Lett. 60, 289–291 (1992).CrossRefGoogle Scholar
  120. 120.
    J. F. Wu, S. B. Jiang, T. Q. Qua, M. Kuwata-Gonokami, N. Peyghambarian, 2 μm lasing from highly thulium doped tellurite glass microsphere, Appl. Phys. Lett. 87, 211118 (2005).CrossRefGoogle Scholar
  121. 121.
    L. Yang, D. K. Armani, K. J. Vahala, Fiber-coupled Erbium Microlasers on a chip, Appl. Phys. Lett. 83, 825–826 (2003).CrossRefGoogle Scholar
  122. 122.
    A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, Ultra-low-threshold erbium-implanted toroidal microlaser on silicon, Appl. Phys. Lett. 84, 1037–1039 (2004).CrossRefGoogle Scholar
  123. 123.
    E. P. Ippen, C. V. Shank, Evanescent-field-pumped dye laser, Appl. Phys. Lett. 21, 301–302 (1972).CrossRefGoogle Scholar
  124. 124.
    G. J. Pendoch, H. S. Mackenzie, F. P. Payne, Tapered optical fibre dye laser, Electron. Lett. 28, 149–150 (1992).CrossRefGoogle Scholar
  125. 125.
    G. J. Pendoch, H. S. Mackenzie, F. P. Payne, Dye lasers using tapered optical fibers, Appl. Opt. 32, 5236–5242 (1993).CrossRefGoogle Scholar
  126. 126.
    H. J. Moon, Y. T. Chough, K. An, Cylindrical microcavity laser based on the evanescent-wave-coupled gain, Phys. Rev. Lett. 85, 3161–3164 (2000).CrossRefGoogle Scholar
  127. 127.
    H. J. Moon, Y. T. Chough, J. B. Kim, K. An, J. Yi, J. Lee, Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser, Appl. Phys. Lett. 76, 3679–3681 (2000).CrossRefGoogle Scholar
  128. 128.
    Y. S. Choi, H. J. Moon, K. Y. An, S. B. Lee, J. H. Lee, J. S. Chang, Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling, J. Korean Phys. Soc. 39, 928–931 (2001).Google Scholar
  129. 129.
    K. An, H. J. Moon, Laser oscillations with pumping-independent ultrahigh cavity quality factors in evanescentwave-coupled-gain microsphere dye lasers, J. Phys. Soc. Jpn. 72, 773–776 (2003).CrossRefGoogle Scholar
  130. 130.
    A. Shevchenko, K. Lindfors, S. C. Buchter, M. Kaivola, Evanescent-wave pumped cylindrical microcavity laser with intense output radiation, Opt. Commun. 245, 349–353 (2005).CrossRefGoogle Scholar
  131. 131.
    H. J. Moon, G. W. Park, S. B. Lee, K. An, J. H. Lee, Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator, Appl. Phys. Lett. 84, 4547–4549 (2004).CrossRefGoogle Scholar
  132. 132.
    D. Psaltis, S. R. Quake, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature 442, 381–386 (2006).CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Limin Tong
    • 1
  • Michael Sumetsky
    • 2
  1. 1.Department of Optical EngineeringZhejiang UniversityHangzhouChina
  2. 2.OFS LaboratoriesSomersetUSA

Personalised recommendations