Properties of MNFs: Experimental Investigations

  • Limin Tong
  • Michael Sumetsky
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


Although the theoretical calculations presented in Chapter 2 can be used to predict the optical wave guiding properties of an MNF in ideal situations, in practice the high fractional evanescent fields guided outside the fiber core usually lead to optical coupling with exotic objects such as microparticles and supporting substrates, resulting in distortion in modal fields and optical loss in the guided power to some extent. Also, for an MNF with a much smaller diameter, the slight fluctuation in the fiber diameter and microbending of the fiber, that are unavoidable in some cases, may contribute significantly to the modifications of the guiding properties. Therefore, experimental properties of MNFs are of critical importance for estimating and utilizing MNFs for practical applications.


Transmission Power Transmission Loss Optical Loss Optical Microscope Image Power Leakage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Junno, K. Deppert, L. Montelius, L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett. 66, 3627–3629 (1995).CrossRefGoogle Scholar
  2. 2.
    D. L. Fan, F. Q. Zhu, R. C. Cammarata, C. L. Chien, Manipulation of nanowires in suspension by ac electric fields, Appl. Phys. Lett. 85, 4175–4177 (2004).CrossRefGoogle Scholar
  3. 3.
    T. Yu, F. C. Cheong, C. H. Sow, The manipulation and assembly of CuO nanorods with line optical tweezers, Nanotechnology 15, 1732–1736 (2004).CrossRefGoogle Scholar
  4. 4.
    R. Agarwal R, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, D. G. Grier, Manipulation and assembly of nanowires with holographic optical traps, Opt. Express 13, 8906–8912 (2005).CrossRefGoogle Scholar
  5. 5.
    L. Y. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes, Nano Lett. 7, 3523–3527 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Fotino, Tip sharpening by normal and reverse electrochemical etching, Rev. Sci. Instrum. 64, 159–167 (1993).CrossRefGoogle Scholar
  7. 7.
    M. J. Matthewson, C. R. Kurkjian, Static fatigue of optical fibers in bending, J. Am. Ceram. Soc. 70, 662–668 (1987).CrossRefGoogle Scholar
  8. 8.
    V. Annovazzi-Ledi, S. Donati, S. Merlo, G. Zapelloni, Statistical analysis of fiber failures under bending-stress fatigue, J. Lightwave Technol. 15, 288–293 (1997).CrossRefGoogle Scholar
  9. 9.
    L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, E. Mazur, Assembly of silica nanowires on silica aerogels for microphotonic devices, Nano Lett. 5, 259–262 (2005).CrossRefGoogle Scholar
  10. 10.
    L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, E. Mazur, Self-modulated taper drawing of silica nanowires, Nanotechnology 16, 1445–1448 (2005).CrossRefGoogle Scholar
  11. 11.
    L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding, Nature 426, 816–819 (2003).CrossRefGoogle Scholar
  12. 12.
    R. C. Hibbeler, Mechanics of Materials, Prentice Hall, 2004.Google Scholar
  13. 13.
    G. N. Morscher, H. Sayir, Bend properties of sapphire fibers at elevated-temperatures. I. Bend survivability, Mater. Sci. Eng. A 190, 267–274 (1995).Google Scholar
  14. 14.
    J. T. Krause, L. R. Testardi, R. N. Thurston, Deviations from linearity in the dependence of elongation upon force for fibers of simple glass formers and of glass optical lightguides, Phys. Chem. Glasses 20, 135–139 (1979).Google Scholar
  15. 15.
    M. J. Matthewson, C. R. Kurkjian, S. T. Gulati, Strength measurement of optical fibers by bending, J. Am. Ceram. Soc. 69, 815–821 (1986).CrossRefGoogle Scholar
  16. 16.
    G. Brambilla, V. Finazzi, D. J. Richardson, Ultra-low-loss optical fiber nanotapers, Opt. Express 12, 2258–2263 (2004).CrossRefGoogle Scholar
  17. 17.
    S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, Supercontinuum generation in submicron fibre waveguides, Opt. Express 12, 2864–2896 (2004).CrossRefGoogle Scholar
  18. 18.
    J. Jackle, K. Kawasaki, Intrinsic roughness of glass surfaces, J. Phys.: Condens. Matter 7, 4351–4358 (1995).CrossRefGoogle Scholar
  19. 19.
    P. K. Gupta, D. Innis, C. R. Kurkjian, Q. Zhong, Nanoscale roughness of oxide glass surfaces, J. Non-Cryst. Solids 262, 200–206 (2000).CrossRefGoogle Scholar
  20. 20.
    T. Seydel, M. Tolan, B. M. Ocko, O. H. Seeck, R. Weber, E. DiMasi, W. Press, Freezing of capillary waves at the glass transition, Phys. Rev. B 65, 184207 (2002).Google Scholar
  21. 21.
    M. Sprung, T. Seydel, C. Gutt, R. Weber, E. DiMasi, A. Madsen, M. Tolan, Surface roughness of supercooled polymer melts, Phys. Rev. E 70, 051809 (2004).Google Scholar
  22. 22.
    P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, T. A. Birks, J. C. Knight, P. St. J. Russell, Ultimate low loss of hollow-core photonic crystal fibres, Opt. Express 13, 236–244 (2005).CrossRefGoogle Scholar
  23. 23.
    T. Sarlat, A. Lelarge, E. Søndergard, D. Vandembroucq, Frozen capillary waves on glass surfaces: an AFM study, Eur. Phys. J. B 54, 121–126 (2006).Google Scholar
  24. 24.
    G. Brambilla, F. Xu, X. Feng, Fabrication of optical fiber nanowires and their optical and mechanical characterization, Electron. Lett. 42, 517–518 (2006).CrossRefGoogle Scholar
  25. 25.
    M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, J. W. Nicholson, Probing optical microfiber nonuniformities at nanoscale, Opt. Lett. 31, 2393–2396 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Sumetsky, How thin can a microfiber be and still guide light, Opt. Lett. 31, 870–872 (2006).CrossRefGoogle Scholar
  27. 27.
    M. Sumetsky, Optics of tunneling from adiabatic nanotapers, Opt. Lett. 31, 3420–3423 (2006).CrossRefGoogle Scholar
  28. 28.
    A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, Short low-loss nanowire tapers on singlemode fibres, Electron. Lett., 41, 954–955 (2005).CrossRefGoogle Scholar
  29. 29.
    M. Sumetsky, Y. Dulashko, P. Domachuk, B. J. Eggleton, Thinnest optical waveguide: experimental test, Opt. Lett. 32, 754–756 (2007).CrossRefGoogle Scholar
  30. 30.
    M. Sumetsky, Y. Dulashko, A. Hale, Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer, Opt. Express 12, 3521–3531 (2004).CrossRefGoogle Scholar
  31. 31.
    M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P. D. Yang, Nanoribbon waveguides for subwavelength photonics integration, Science 305, 1269–1273 (2004).CrossRefGoogle Scholar
  32. 32.
    D. J. Sirbuly, M. Law, P. Pauzauskie, H. Q. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, P. D. Yang, Optical routing and sensing with nanowire assemblies, PNAS 102, 7800–7805 (2005).CrossRefGoogle Scholar
  33. 33.
    L. M. Tong, J. Y. Lou, E. Mazur, Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Opt. Express 12, 1025–1035 (2004).CrossRefGoogle Scholar
  34. 34.
    F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, Polymer single-nanowire optical sensors, Nano Lett. 8, 2757–2761 (2008).CrossRefGoogle Scholar
  35. 35.
    Y. Chen, Z. Ma, Q. Yang, L. M. Tong, Compact optical short-pass filters based on microfibers, Opt. Lett. 33, 2565–2567 (2008).Google Scholar
  36. 36.
    Z. Ma, S. S. Wang, Q. Yang, L. M. Tong, Near-field characterization of micro/nanofibers, Chin. Phys. Lett. 24, 3006–3008 (2007).CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Limin Tong
    • 1
  • Michael Sumetsky
    • 2
  1. 1.Department of Optical EngineeringZhejiang UniversityHangzhouChina
  2. 2.OFS LaboratoriesSomersetUSA

Personalised recommendations