Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1382 Accesses

Abstract

In the past 30 years, optical fibers with diameters larger than the wavelength of guided light have found wide applications including optical communication, sensing, power delivery and nonlinear optics[1-6]. For example, by transmission of light through total internal reflection in optical fibers, the power of light has been sent to travel across the sea for telecommunications [ 1,2], to creep into buildings for safety monitoring[3,4], to puncture tissues for laser surgery [5] as well as many other applications ranging from illumination and imaging to astronomical research [7,8]. Recent advances in nanotechnology and the increasing demand for faster response, smaller footprint, higher sensitivity and lower power consumption have, however, spurred efforts for the miniaturization of optical fibers and fiber-optic devices[8-10]. Therefore, an important motivation for fabricating subwavelength-diameter optical fibers is their potential usefulness as building blocks in future micro- or nanometer-scale photonic components or devices and as tools for mesoscopic optics research. Also, it is always interesting to guide light and watch how it works on those scales that have not been tried yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. D. K. Mynbaev, L. L. Scheiner, Fiber-Optic Communications Technology, Prentice Hall, New York, 2001.

    Google Scholar 

  2. C. DeCusatis, Handbook of Fiber Optic Data Communication, Academic Press, Boston, 2008.

    Google Scholar 

  3. J. Dakin, B. Culshaw, Optical Fiber Sensors: Principles and Components, Artech House city, 1988.

    Google Scholar 

  4. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, John Wiley and Sons, Inc., New York, 1991.

    Google Scholar 

  5. A. Katzir, Lasers and Optical Fibers in Medicine, Academic Press city, 1993.

    Google Scholar 

  6. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, Boston, 2007.

    Google Scholar 

  7. J. Hecht, City of Light: The Story of Fiber Optics, Oxford University Press, New York, 1999.

    Google Scholar 

  8. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, P. S. Russell, Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers, Opt. Lett. 26, 1137–1139 (2001).

    Google Scholar 

  9. P. Domachuk, B. J. Eggleton, Photonics: Shrinking optical fibres, Nature Mater. 3, 85–86 (2004).

    Google Scholar 

  10. A. Méndez, T. F. Morse, Specialty optical fibers handbook, Academic Press, Amsterdam, 2007.

    Google Scholar 

  11. D. R. Goff, Fiber Optic Reference Guide, Focal Press, Woburn, Massachusetts, 2002.

    Google Scholar 

  12. C. V. Boys, On the production, properties, and some suggested uses of the finest threads, Phil. Mag. 23, 489–499 (1887).

    Google Scholar 

  13. R. Threlfall, On Laboratory Arts, Macmillan, London, 1898.

    Google Scholar 

  14. N. S. Kapany, High-resolution fibre optics using sub-micron multiple fibres, Nature 184, 881–883 (1959).

    Google Scholar 

  15. T. Maiman, Stimulated optical emission in Ruby, Nature 187, 493–494 (1960).

    Google Scholar 

  16. K. C. Kao, G. A. Hockham, Dielectric-fibre surface waveguides for optical frequencies, Proc. IEE 113, 1151–1158 (1966).

    Google Scholar 

  17. J. D. Love, W. M. Henry, Quantifying loss minimisation in single-mode fibre tapers, Electron. Lett. 22, 912–914 (1986).

    Google Scholar 

  18. W. K. Burns, M. Abebe, C. A. Villarruel, R. P. Moeller, Loss mechanisms in single-mode fiber tapers, J. Lightwave Technol. 4, 608–613 (1986).

    Google Scholar 

  19. R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, Tapered fibers: an overview, Proc. SPIE 839, 2–19 (1987).

    Google Scholar 

  20. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Tapered single-mode fibres and devices — Part 1: Adiabaticity criteria, IEE Proc. 138, 343–354 (1991).

    Google Scholar 

  21. R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, Tapered single-mode fibres and devices — Part 2: Experimental and theoretical quantification, IEE Proc. 138, 355–364 (1991).

    Google Scholar 

  22. T. A. Birks, Y. W. Li, The shape of fiber tapers, J. Lightwave Technol. 10, 432–438 (1992).

    Google Scholar 

  23. F. Bilodeau, K. O. Hill, D. C. Johnson, S. Faucher, Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff, Opt. Lett. 12, 634–636 (1987).

    Google Scholar 

  24. J. C. Knight, G. Cheung, F. Jacques, T. A. Birks, Phase-matched excitation of whispering-gallery mode resonances by a fiber taper, Opt. Lett. 22, 1129–1131 (1997).

    Google Scholar 

  25. T. E. Dimmick, G. Kakarantzas, T. A. Birks, P. S. Russell, Carbon dioxide laser fabrication of fused-fiber couplers and tapers, Appl. Opt. 38, 6845–6848 (1999).

    Google Scholar 

  26. D. T. Cassidy, D. C. Johnson, K. O. Hill, Wavelength-dependent transmission of monomode optical fiber tapers, Appl. Opt. 24, 945–950 (1985).

    Google Scholar 

  27. S. Lacroix, F. Gonthier, J. Bures, All-fiber wavelength filter from successive biconical tapers, Opt. Lett. 11, 671–673 (1986).

    Google Scholar 

  28. Z. M. Hale, F. P. Payne, Demonstration of an optimised evanescent field optical fibre sensor, Anal. Chim. Acta. 293, 49–54 (1994).

    Google Scholar 

  29. P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, K. Nugent, Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors, J. Appl. Phys. 85, 3395–3398 (1999).

    Google Scholar 

  30. H. S. Mackenzie, F. P. Payne, Evanescent field amplification in a tapered single-mode fibre, Electron. Lett. 26, 130–132 (1990).

    Google Scholar 

  31. T. A. Birks, W. J. Wadsworth, P. S. Russell, Supercontinuum generation in tapered fibers, Opt. Lett. 25, 1415–1417 (2000).

    Google Scholar 

  32. J. Bures, R. Ghosh, Power density of the evanescent field in the vicinity of a tapered fiber, J. Opt. Soc. Am. A 16, 1992–1996 (1999).

    Google Scholar 

  33. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding, Nature 426, 816–819 (2003).

    Google Scholar 

  34. L. M. Tong, J. Y. Lou, E. Mazur, Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Opt. Express 12, 1025–1035 (2004).

    Google Scholar 

  35. G. Brambilla, V. Finazzi, D. J. Richardson, Ultra-low-loss optical fiber nanotapers, Opt. Express 12, 2258–2263 (2004).

    Google Scholar 

  36. M. Sumetsky, Y. Dulashko, A. Hale, Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer, Opt. Express 12, 3521–3531 (2004).

    Google Scholar 

  37. M. Kolesik, E. M. Wright, J. V. Moloney, Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers, Appl. Phys. B 79, 293–300 (2004).

    Google Scholar 

  38. F. Le Kien, J. Q. Liang, K. Hakuta, V. I. Balykin, Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber, Opt. Commun. 242, 445–455 (2004).

    Google Scholar 

  39. E. C. Mägi, H. C. Nguyen, B. J. Eggleton, Air-hole collapse and mode transitions in microstructured fiber photonic wires, Opt. Express 13, 453–459 (2005).

    Google Scholar 

  40. D. Qing, G. Chen, Nanoscale optical waveguides with negative dielectric claddings, Phys. Rev. B 71, 153107 (2005).

    Google Scholar 

  41. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, E. Mazur, Assembly of silica nanowires on silica aerogels for microphotonics devices, Nano Lett. 5, 259–262 (2005).

    Google Scholar 

  42. A. M. Zheltikov, Birefringence of guided modes in photonic wires: Gaussian-mode analysis, Opt. Commun. 252, 78–83 (2005).

    Google Scholar 

  43. L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, E. Mazur, Self-modulated taper drawing of silica nanowires, Nanotechnology 16, 1445–1448 (2005).

    Google Scholar 

  44. G. Brambilla, F. Koizumi, X. Feng and D. J. Richardson, Compound-glass optical nanowires, Electron. Lett. 41, 400–402 (2005).

    Google Scholar 

  45. A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, Short low-loss nanowire tapers on single mode fibres, Electron. Lett. 41, 954–955 (2005).

    Google Scholar 

  46. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, Z. Z. Ye, Photonic nanowires directly drawn from bulk glasses, Opt. Express 14, 82–87 (2006).

    Google Scholar 

  47. G. Brambilla, F. Xu, X. Feng, Fabrication of optical fibre nanowires and their optical and mechanical characterization, Electron. Lett. 42, 517–519 (2006).

    Google Scholar 

  48. L. Shi, X. F. Chen, H. J. Liu, Y. P. Chen, Z. Q. Ye, W. J. Liao, Y. X. Xia, Fabrication of submicron-diameter silica fibers using electric strip heater, Opt. Express 14, 5055–5060 (2006).

    Google Scholar 

  49. V. G. Bordo, Light scattering from a nanofiber: Exact numerical solution of a model system, Phys. Rev. B 73, 205117 (2006).

    Google Scholar 

  50. F. L. Kien, V. I. Balykin, K. Hakuta, Angular momentum of light in an optical nanofiberm, Phys. Rev. A 73, 053823 (2006).

    Google Scholar 

  51. I. D. Chremmos, N. K. Uzunoglu, Integral equation analysis of scattering by a spherical microparticle coupled to a subwavelength-diameter wire waveguide, J. Opt. Soc. Am. A 23, 461–467 (2006).

    MathSciNet  Google Scholar 

  52. J. Y. Lou, L. M. Tong, Z. Z. Ye, Dispersion shifts in optical nanowires with thin dielectric coatings, Opt. Express 14, 6993–6998 (2006).

    Google Scholar 

  53. E. C. C. M. Silva, L. M. Tong, S. Yip, K. J. van Vliet, Size effects on the stiffness of silica nanowires, Small 2, 239–243 (2006).

    Google Scholar 

  54. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, J. W. Nicholson, Probing optical microfiber nonuniformities at nanoscale, Opt. Lett. 31, 2393–2395 (2006).

    Google Scholar 

  55. M. Sumetsky, How thin can a microfiber be and still guide light? Opt. Lett. 31, 870–872 (2006).

    Google Scholar 

  56. K. J. Huang, S. Y. Yang, L. M. Tong, Modeling of evanescent coupling between two parallel optical nanowires, Appl. Opt. 46, 1429–1434 (2007).

    Google Scholar 

  57. M. Sumetsky, Radiation loss of a nanotaper: singular Gaussian beam model, Opt. Express 15, 1480–1490 (2007).

    Google Scholar 

  58. G. Y. Zhai, L. M. Tong, Roughness-induced radiation losses in optical micro or nanofibers, Opt. Express 15, 13805–13816 (2007).

    Google Scholar 

  59. Z. Ma, S. S. Wang, Q. Yang, L. M. Tong, Near-field characterization of optical micro/nanofibers, Chin. Phys. Lett. 24, 3006–3008 (2007).

    Google Scholar 

  60. C. J. Zhao, Z. X. Tang, Y. X. Ye, D. Y. Fan, L. J. Qian, S. C. Wen, G. H. Chen, Field and dispersion properties of subwavelength-diameter hollow optical fiber, Opt. Express 15, 6629–6634 (2007).

    Google Scholar 

  61. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, L. M. Tong, Modeling endface output patterns of optical micro/nanofibers, Opt. Express 16, 8887–8895 (2008).

    Google Scholar 

  62. A. V. Kovalenko, V. N. Kurashov, A. V. Kisil, Radiation losses in optical nanofibers with random rough surface, Opt. Express 16, 5797–5806 (2008).

    Google Scholar 

  63. M. Sumetsky, Optical fiber microcoil resonator, Opt. Express 12, 2303–2316 (2004).

    Google Scholar 

  64. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, Optical microfiber loop resonator, Appl. Phys. Lett. 86, 161108 (2005).

    Google Scholar 

  65. M. Sumetsky, Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, dispersion relation, Opt. Express 13, 4331–4340 (2005).

    Google Scholar 

  66. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, The microfiber loop resonator: theory, experiment, application, J. lightwave Technol. 24, 242–250 (2006).

    Google Scholar 

  67. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, Demonstration of optical microfiber knot resonators, Appl. Phys. Lett. 88, 223501 (2006).

    Google Scholar 

  68. G. Vienne, Y. H. Li, L. M. Tong, Effect of host polymer on microfiber resonator, IEEE Photon. Technol. Lett. 19, 1386–1388 (2007).

    Google Scholar 

  69. F. Xu, G. Brambilla, Embedding optical microfiber coil resonators in Teflon, Opt. Lett. 32, 2164–2166 (2007).

    Google Scholar 

  70. F. Xu, P. Horak, G. Brambilla, Optimized design of microcoil resonators, J. Lightwave Technol. 25, 1561–1567 (2007).

    Google Scholar 

  71. X. Guo, Y. H. Li, X. S. Jiang, L. M. Tong, Demonstration of critical coupling in microfiber loops wrapped around a copper rod, Appl. Phys. Lett. 91, 073512 (2007).

    Google Scholar 

  72. F. Xu, G. Brambilla, Manufacture of 3-D microfiber coil resonators, IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).

    Google Scholar 

  73. M. Sumetsky, Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators, J. Lightwave Technol. 26, 21–27 (2008).

    Google Scholar 

  74. Y. H. Li, L. M. Tong, Mach-Zehnder interferometers assembled with optical microfibers or nanofibers, Opt. Lett. 33, 303–305 (2008).

    Google Scholar 

  75. X. S. Jiang, Y. Chen, G. Vienne, L. M. Tong, All-fiber add-drop filters based on microfiber knot resonators, Opt. Lett. 32, 1710–1712 (2007).

    Google Scholar 

  76. Y. Chen, Z. Ma, Q. Yang, L. M. Tong, Compact optical short-pass filters based on microfibers, Opt. Lett. 33, 2565–2567 (2008).

    Google Scholar 

  77. Y. Wu, X. Zeng, C. L. Hou, J. Bai, G. G. Yang, A tunable all-fiber filter based on microfiber loop resonator, Appl. Phys. Lett. 92, 191112 (2008).

    Google Scholar 

  78. Y. H. Li, G. Vienne, X. S. Jiang, X. Y. Pan, X. Liu, P. F. Gu, L. M. Tong, Modeling rare-earth doped microfiber ring lasers, Opt. Express 14, 7073–7086 (2006).

    Google Scholar 

  79. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, L. L. Hu, Demonstration of microfiber knot laser, Appl. Phys. Lett. 89, 143513 (2006).

    Google Scholar 

  80. X. S. Jiang, Q. H. Song, L. Xu, J. Fu, L. M. Tong, Microfiber knot dye laser based on the evanescent-wave-coupled gain, Appl. Phys. Lett. 90, 233501 (2007).

    Google Scholar 

  81. A. AlOrainy, Y. H. Li, L. M. Tong, Evaluation of quenching effects on silicabased erbium doped fiber micro-ring lasers, Opt. Commun. 281, 3000–3003 (2008).

    Google Scholar 

  82. J. Y. Lou, L. M. Tong, Z. Z. Ye, Modeling of silica nanowires for optical sensing, Opt. Express 13, 2135–2140 (2005).

    Google Scholar 

  83. P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels, Opt. Lett. 30, 1273–1275 (2005).

    Google Scholar 

  84. J. Villatoro, D. Monzón-Hernández, Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers, Opt. Express 13, 5087–5092 (2005).

    Google Scholar 

  85. W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, Highly sensitive fiber Bragg grating refractive index sensors, Appl. Phys. Lett. 86, 151122 (2005).

    Google Scholar 

  86. S. S. Wang, X. Y. Pan, L. M. Tong, Modeling of nanoparticle induced Rayleigh-Gans scattering for nanofiber optical sensing, Opt. Commun. 276, 293–297 (2007).

    Google Scholar 

  87. M. Sumetsky, R. S. Windeler, Y. Dulashko, X. D. Fan, Optical liquid ring resonator sensor, Opt. Express 15, 14376–14381 (2007).

    Google Scholar 

  88. L. Shi, Y. H. Xu, W. Tan, X. F. Chen, Simulation of optical microfiber loop resonators for ambient refractive index sensing, Sensors 7, 689–696 (2007).

    Google Scholar 

  89. F. Xu, P. Horak, G. Brambilla, Optical microfiber coil resonator refractometric sensor, Opt. Express 15, 7888–7893 (2007).

    Google Scholar 

  90. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, Ultrasensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers, Opt. Express 15, 11952–11958 (2007).

    Google Scholar 

  91. X. Guo, L. M. Tong, Supported microfiber loops for optical sensing, Opt. Express 16, 14429–14434 (2008).

    Google Scholar 

  92. F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, An embedded optical nanowire loop resonator refractometric sensor, Opt. Express 16, 1062–1067 (2008).

    Google Scholar 

  93. L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, L. M. Tong, Fast detection of humidity with a subwavelength diameter fiber taper coated with gelatin film, Opt. Express 16, 13349–13353 (2008).

    Google Scholar 

  94. G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, L. M. Tong, Theoretical study of microfiber resonator devices exploiting a phase shift, J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).

    Google Scholar 

  95. F. Xu, G. Brambilla, Demonstration of a refractometric sensor based on optical microfiber coil resonator, Appl. Phys. Lett. 92, 101126 (2008).

    Google Scholar 

  96. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, Supercontinuum generation in submicron fibre Waveguides, Opt. Express 12, 2864–2869 (2004).

    Google Scholar 

  97. M. A. Foster, K. D. Moll, A. L. Gaeta, Optimal waveguide dimensions for nonlinear interactions, Opt. Express 12, 2880–2887 (2004).

    Google Scholar 

  98. M. A. Foster, A. L. Gaeta, Ultra-low threshold supercontinuum generation in sub-wavelength waveguides, Opt. Express 12, 3137–3143 (2004).

    Google Scholar 

  99. M. Kolesik, J. V. Moloney, Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations, Phys. Rev. E 70, 036604 (2004).

    Google Scholar 

  100. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation, Appl. Phys. B 81, 363–367 (2005).

    Google Scholar 

  101. M. A. Foster, A. L. Gaeta, Q. Cao, D. Lee, R. Trebino, Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires, Opt. Express 13, 6848–6855 (2005).

    Google Scholar 

  102. A. Zheltikov, Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlin-earity of optical fibers and photonic wires, J. Opt. Soc. Am. B 22, 1100–1104 (2005).

    MathSciNet  Google Scholar 

  103. R. R. Gattass, G. T. Svacha, L. M. Tong, E. Mazur, Supercontinuum generation in submicrometer diameter silica fibers, Opt. Express 14, 9408–9414 (2006).

    Google Scholar 

  104. G. Vienne, P. Grelu, Y. H. Li, L. M. Tong, Observation of a nonlinear microfiber resonator, Opt. Lett. 33, 1500–1502 (2008).

    Google Scholar 

  105. M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, Nonlinear optics in photonic nanowires, Opt. Express 16, 1300–1320 (2008).

    Google Scholar 

  106. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical microfiber embedded in a hot rubidium vapor, Phys. Rev. Lett. 100, 233602 (2008).

    Google Scholar 

  107. V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, Atom trapping and guiding with a subwavelength-diameter optical fiber, Phys. Rev. A 70, 011401 (2004).

    Google Scholar 

  108. F. Le Kien, V. I. Balykin, K. Hakuta, Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber, Phys. Rev. A 70, 063403 (2004).

    Google Scholar 

  109. F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes, Phys. Rev. A, 72, 032509 (2005).

    Google Scholar 

  110. F. Le Kien, V. I. Balykin, K. Hakuta, State-insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber, J. Phys. Soc. Japan 74, 910–917 (2005).

    MATH  Google Scholar 

  111. F. Le Kien, V. I. Balykin, K. Hakuta, Scattering of an evanescent light field by a single cesium atom near a nanofiber, Phys. Rev. A 73, 013819 (2006).

    Google Scholar 

  112. F. Le Kien, V. I. Balykin, K. Hakuta, Light-induced force and torque on an atom outside a nanofiber, Phys. Rev. A 74, 033412 (2006).

    Google Scholar 

  113. G. Sague, E. Vetsch, W. Alt, D. Meschede, A. Rauschenbeutel, Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions, Phys. Rev. Lett. 99, 163602 (2007).

    Google Scholar 

  114. J. Fu, X. Yin, N. Y. Li, L. M. Tong, Atom waveguide and 1D optical lattice using a two-color evanescent light field around an optical micro/nano-fiber, Chin. Opt. Lett. 6, 112–115 (2008).

    Google Scholar 

  115. K. P. Nayak, K. Hakuta, Single atoms on an optical nanofibre, New J. Phys. 10, 053003 (2008).

    Google Scholar 

  116. J. T. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32, 435–445 (1999).

    Google Scholar 

  117. C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires, Prog. Solid State Chem. 31, 5–147 (2003).

    Google Scholar 

  118. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater. 15, 353–389 (2003).

    Google Scholar 

  119. M. Law, J. Goldberger, P. D. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 34, 83–122 (2004).

    Google Scholar 

  120. H. J. Fan, P. Werner, M. Zacharias, Semiconductor nanowires: From self-organization to patterned growth, Small 2, 700–717 (2006).

    Google Scholar 

  121. D. H. Reneker, A. L. Yarin, E. Zussman, H. Xu, Electrospinning of nanofibers from polymer solutions and melts, Adv. Appl. Mech. 41, 43–195 (2007).

    Google Scholar 

  122. K. Jayaraman, M. Kotaki, Y. Z. Zhang, X. M. Mo, S. Ramakrishna, Recent advances in polymer nanofibers, J. Nanosci. Nanotechnol. 4, 52–65 (2004).

    Google Scholar 

  123. A. N. Aleshin, Polymer nanofibers and nanotubes: Charge transport and device applications, Adv. Mater. 18, 17–27 (2006).

    Google Scholar 

  124. Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63, 2223–2253 (2003).

    Google Scholar 

  125. A. Frenot, I. S. Chronakis, Polymer nanofibers assembled by electrospinning, Curr. Opin. Colloid Interface Sci. 8, 64–75 (2003).

    Google Scholar 

  126. S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, R. W. Cohn, Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers, Nano Lett. 4, 1931–1937 (2004).

    Google Scholar 

  127. H. Liu, J. B. Edel, L. M. Bellan, H. G. Craighead, Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots, Small 2, 495–499 (2006).

    Google Scholar 

  128. Q. Yang, X. S. Jiang, F. X. Gu, Z. Ma, J. Y. Zhang, L. M. Tong, Polymer micro or nanofibers for optical device applications, J. Appl. Polymer Sci. 110, 1080–1084 (2008).

    Google Scholar 

  129. F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, Polymer single-nanowire optical sensors, Nano Lett. 8, 2757–2761 (2008).

    Google Scholar 

  130. X. B. Xing, H. Zhu, Y. Q. Wang, B. J. Li, Ultracompact photonic coupling splitters twisted by PTT nanowires, Nano Lett. 8, 2839–2843 (2008).

    Google Scholar 

  131. M. L. Guo, J. C. Shi, B. J. Li, Polymer-based micro/nanowire structures for three-dimensional photonic integrations, Opt. Lett. 33, 2104–2106 (2008).

    Google Scholar 

  132. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, New York, 1991.

    Google Scholar 

  133. A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, 1998.

    Google Scholar 

  134. A. W. Snyder, J. D. Love, Optical waveguide theory, Chapman and Hall, New York, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tong, L., Sumetsky, M. (2010). Introduction. In: Subwavelength and Nanometer Diameter Optical Fibers. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03362-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03362-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03361-2

  • Online ISBN: 978-3-642-03362-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics