Advertisement

Abstract

In the past 30 years, optical fibers with diameters larger than the wavelength of guided light have found wide applications including optical communication, sensing, power delivery and nonlinear optics[1-6]. For example, by transmission of light through total internal reflection in optical fibers, the power of light has been sent to travel across the sea for telecommunications [ 1,2], to creep into buildings for safety monitoring[3,4], to puncture tissues for laser surgery [5] as well as many other applications ranging from illumination and imaging to astronomical research [7,8]. Recent advances in nanotechnology and the increasing demand for faster response, smaller footprint, higher sensitivity and lower power consumption have, however, spurred efforts for the miniaturization of optical fibers and fiber-optic devices[8-10]. Therefore, an important motivation for fabricating subwavelength-diameter optical fibers is their potential usefulness as building blocks in future micro- or nanometer-scale photonic components or devices and as tools for mesoscopic optics research. Also, it is always interesting to guide light and watch how it works on those scales that have not been tried yet.

Keywords

Optical Waveguide Silica Aerogel Cesium Atom Supercontinuum Generation Semiconductor Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. 1.
    D. K. Mynbaev, L. L. Scheiner, Fiber-Optic Communications Technology, Prentice Hall, New York, 2001.Google Scholar
  2. 2.
    C. DeCusatis, Handbook of Fiber Optic Data Communication, Academic Press, Boston, 2008.Google Scholar
  3. 3.
    J. Dakin, B. Culshaw, Optical Fiber Sensors: Principles and Components, Artech House city, 1988.Google Scholar
  4. 4.
    E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, John Wiley and Sons, Inc., New York, 1991.Google Scholar
  5. 5.
    A. Katzir, Lasers and Optical Fibers in Medicine, Academic Press city, 1993.Google Scholar
  6. 6.
    G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, Boston, 2007.Google Scholar
  7. 7.
    J. Hecht, City of Light: The Story of Fiber Optics, Oxford University Press, New York, 1999.Google Scholar
  8. 8.
    G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, P. S. Russell, Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers, Opt. Lett. 26, 1137–1139 (2001).Google Scholar
  9. 9.
    P. Domachuk, B. J. Eggleton, Photonics: Shrinking optical fibres, Nature Mater. 3, 85–86 (2004).Google Scholar
  10. 10.
    A. Méndez, T. F. Morse, Specialty optical fibers handbook, Academic Press, Amsterdam, 2007.Google Scholar
  11. 11.
    D. R. Goff, Fiber Optic Reference Guide, Focal Press, Woburn, Massachusetts, 2002.Google Scholar
  12. 12.
    C. V. Boys, On the production, properties, and some suggested uses of the finest threads, Phil. Mag. 23, 489–499 (1887).Google Scholar
  13. 13.
    R. Threlfall, On Laboratory Arts, Macmillan, London, 1898.Google Scholar
  14. 14.
    N. S. Kapany, High-resolution fibre optics using sub-micron multiple fibres, Nature 184, 881–883 (1959).Google Scholar
  15. 15.
    T. Maiman, Stimulated optical emission in Ruby, Nature 187, 493–494 (1960).Google Scholar
  16. 16.
    K. C. Kao, G. A. Hockham, Dielectric-fibre surface waveguides for optical frequencies, Proc. IEE 113, 1151–1158 (1966).Google Scholar
  17. 17.
    J. D. Love, W. M. Henry, Quantifying loss minimisation in single-mode fibre tapers, Electron. Lett. 22, 912–914 (1986).Google Scholar
  18. 18.
    W. K. Burns, M. Abebe, C. A. Villarruel, R. P. Moeller, Loss mechanisms in single-mode fiber tapers, J. Lightwave Technol. 4, 608–613 (1986).Google Scholar
  19. 19.
    R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, Tapered fibers: an overview, Proc. SPIE 839, 2–19 (1987).Google Scholar
  20. 20.
    J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Tapered single-mode fibres and devices — Part 1: Adiabaticity criteria, IEE Proc. 138, 343–354 (1991).Google Scholar
  21. 21.
    R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, Tapered single-mode fibres and devices — Part 2: Experimental and theoretical quantification, IEE Proc. 138, 355–364 (1991).Google Scholar
  22. 22.
    T. A. Birks, Y. W. Li, The shape of fiber tapers, J. Lightwave Technol. 10, 432–438 (1992).Google Scholar
  23. 23.
    F. Bilodeau, K. O. Hill, D. C. Johnson, S. Faucher, Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff, Opt. Lett. 12, 634–636 (1987).Google Scholar
  24. 24.
    J. C. Knight, G. Cheung, F. Jacques, T. A. Birks, Phase-matched excitation of whispering-gallery mode resonances by a fiber taper, Opt. Lett. 22, 1129–1131 (1997).Google Scholar
  25. 25.
    T. E. Dimmick, G. Kakarantzas, T. A. Birks, P. S. Russell, Carbon dioxide laser fabrication of fused-fiber couplers and tapers, Appl. Opt. 38, 6845–6848 (1999).Google Scholar
  26. 26.
    D. T. Cassidy, D. C. Johnson, K. O. Hill, Wavelength-dependent transmission of monomode optical fiber tapers, Appl. Opt. 24, 945–950 (1985).Google Scholar
  27. 27.
    S. Lacroix, F. Gonthier, J. Bures, All-fiber wavelength filter from successive biconical tapers, Opt. Lett. 11, 671–673 (1986).Google Scholar
  28. 28.
    Z. M. Hale, F. P. Payne, Demonstration of an optimised evanescent field optical fibre sensor, Anal. Chim. Acta. 293, 49–54 (1994).Google Scholar
  29. 29.
    P. Moar, S. Huntington, J. Katsifolis, L. Cahill, A. Roberts, K. Nugent, Fabrication, modeling and direct evanescent field measurement of tapered optical fiber sensors, J. Appl. Phys. 85, 3395–3398 (1999).Google Scholar
  30. 30.
    H. S. Mackenzie, F. P. Payne, Evanescent field amplification in a tapered single-mode fibre, Electron. Lett. 26, 130–132 (1990).Google Scholar
  31. 31.
    T. A. Birks, W. J. Wadsworth, P. S. Russell, Supercontinuum generation in tapered fibers, Opt. Lett. 25, 1415–1417 (2000).Google Scholar
  32. 32.
    J. Bures, R. Ghosh, Power density of the evanescent field in the vicinity of a tapered fiber, J. Opt. Soc. Am. A 16, 1992–1996 (1999).Google Scholar
  33. 33.
    L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding, Nature 426, 816–819 (2003).Google Scholar
  34. 34.
    L. M. Tong, J. Y. Lou, E. Mazur, Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Opt. Express 12, 1025–1035 (2004).Google Scholar
  35. 35.
    G. Brambilla, V. Finazzi, D. J. Richardson, Ultra-low-loss optical fiber nanotapers, Opt. Express 12, 2258–2263 (2004).Google Scholar
  36. 36.
    M. Sumetsky, Y. Dulashko, A. Hale, Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer, Opt. Express 12, 3521–3531 (2004).Google Scholar
  37. 37.
    M. Kolesik, E. M. Wright, J. V. Moloney, Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers, Appl. Phys. B 79, 293–300 (2004).Google Scholar
  38. 38.
    F. Le Kien, J. Q. Liang, K. Hakuta, V. I. Balykin, Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber, Opt. Commun. 242, 445–455 (2004).Google Scholar
  39. 39.
    E. C. Mägi, H. C. Nguyen, B. J. Eggleton, Air-hole collapse and mode transitions in microstructured fiber photonic wires, Opt. Express 13, 453–459 (2005).Google Scholar
  40. 40.
    D. Qing, G. Chen, Nanoscale optical waveguides with negative dielectric claddings, Phys. Rev. B 71, 153107 (2005).Google Scholar
  41. 41.
    L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, E. Mazur, Assembly of silica nanowires on silica aerogels for microphotonics devices, Nano Lett. 5, 259–262 (2005).Google Scholar
  42. 42.
    A. M. Zheltikov, Birefringence of guided modes in photonic wires: Gaussian-mode analysis, Opt. Commun. 252, 78–83 (2005).Google Scholar
  43. 43.
    L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha, E. Mazur, Self-modulated taper drawing of silica nanowires, Nanotechnology 16, 1445–1448 (2005).Google Scholar
  44. 44.
    G. Brambilla, F. Koizumi, X. Feng and D. J. Richardson, Compound-glass optical nanowires, Electron. Lett. 41, 400–402 (2005).Google Scholar
  45. 45.
    A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, Short low-loss nanowire tapers on single mode fibres, Electron. Lett. 41, 954–955 (2005).Google Scholar
  46. 46.
    L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, Z. Z. Ye, Photonic nanowires directly drawn from bulk glasses, Opt. Express 14, 82–87 (2006).Google Scholar
  47. 47.
    G. Brambilla, F. Xu, X. Feng, Fabrication of optical fibre nanowires and their optical and mechanical characterization, Electron. Lett. 42, 517–519 (2006).Google Scholar
  48. 48.
    L. Shi, X. F. Chen, H. J. Liu, Y. P. Chen, Z. Q. Ye, W. J. Liao, Y. X. Xia, Fabrication of submicron-diameter silica fibers using electric strip heater, Opt. Express 14, 5055–5060 (2006).Google Scholar
  49. 49.
    V. G. Bordo, Light scattering from a nanofiber: Exact numerical solution of a model system, Phys. Rev. B 73, 205117 (2006).Google Scholar
  50. 50.
    F. L. Kien, V. I. Balykin, K. Hakuta, Angular momentum of light in an optical nanofiberm, Phys. Rev. A 73, 053823 (2006).Google Scholar
  51. 51.
    I. D. Chremmos, N. K. Uzunoglu, Integral equation analysis of scattering by a spherical microparticle coupled to a subwavelength-diameter wire waveguide, J. Opt. Soc. Am. A 23, 461–467 (2006).MathSciNetGoogle Scholar
  52. 52.
    J. Y. Lou, L. M. Tong, Z. Z. Ye, Dispersion shifts in optical nanowires with thin dielectric coatings, Opt. Express 14, 6993–6998 (2006).Google Scholar
  53. 53.
    E. C. C. M. Silva, L. M. Tong, S. Yip, K. J. van Vliet, Size effects on the stiffness of silica nanowires, Small 2, 239–243 (2006).Google Scholar
  54. 54.
    M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, J. W. Nicholson, Probing optical microfiber nonuniformities at nanoscale, Opt. Lett. 31, 2393–2395 (2006).Google Scholar
  55. 55.
    M. Sumetsky, How thin can a microfiber be and still guide light? Opt. Lett. 31, 870–872 (2006).Google Scholar
  56. 56.
    K. J. Huang, S. Y. Yang, L. M. Tong, Modeling of evanescent coupling between two parallel optical nanowires, Appl. Opt. 46, 1429–1434 (2007).Google Scholar
  57. 57.
    M. Sumetsky, Radiation loss of a nanotaper: singular Gaussian beam model, Opt. Express 15, 1480–1490 (2007).Google Scholar
  58. 58.
    G. Y. Zhai, L. M. Tong, Roughness-induced radiation losses in optical micro or nanofibers, Opt. Express 15, 13805–13816 (2007).Google Scholar
  59. 59.
    Z. Ma, S. S. Wang, Q. Yang, L. M. Tong, Near-field characterization of optical micro/nanofibers, Chin. Phys. Lett. 24, 3006–3008 (2007).Google Scholar
  60. 60.
    C. J. Zhao, Z. X. Tang, Y. X. Ye, D. Y. Fan, L. J. Qian, S. C. Wen, G. H. Chen, Field and dispersion properties of subwavelength-diameter hollow optical fiber, Opt. Express 15, 6629–6634 (2007).Google Scholar
  61. 61.
    S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, L. M. Tong, Modeling endface output patterns of optical micro/nanofibers, Opt. Express 16, 8887–8895 (2008).Google Scholar
  62. 62.
    A. V. Kovalenko, V. N. Kurashov, A. V. Kisil, Radiation losses in optical nanofibers with random rough surface, Opt. Express 16, 5797–5806 (2008).Google Scholar
  63. 63.
    M. Sumetsky, Optical fiber microcoil resonator, Opt. Express 12, 2303–2316 (2004).Google Scholar
  64. 64.
    M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, Optical microfiber loop resonator, Appl. Phys. Lett. 86, 161108 (2005).Google Scholar
  65. 65.
    M. Sumetsky, Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, dispersion relation, Opt. Express 13, 4331–4340 (2005).Google Scholar
  66. 66.
    M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, The microfiber loop resonator: theory, experiment, application, J. lightwave Technol. 24, 242–250 (2006).Google Scholar
  67. 67.
    X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. R. Yang, Demonstration of optical microfiber knot resonators, Appl. Phys. Lett. 88, 223501 (2006).Google Scholar
  68. 68.
    G. Vienne, Y. H. Li, L. M. Tong, Effect of host polymer on microfiber resonator, IEEE Photon. Technol. Lett. 19, 1386–1388 (2007).Google Scholar
  69. 69.
    F. Xu, G. Brambilla, Embedding optical microfiber coil resonators in Teflon, Opt. Lett. 32, 2164–2166 (2007).Google Scholar
  70. 70.
    F. Xu, P. Horak, G. Brambilla, Optimized design of microcoil resonators, J. Lightwave Technol. 25, 1561–1567 (2007).Google Scholar
  71. 71.
    X. Guo, Y. H. Li, X. S. Jiang, L. M. Tong, Demonstration of critical coupling in microfiber loops wrapped around a copper rod, Appl. Phys. Lett. 91, 073512 (2007).Google Scholar
  72. 72.
    F. Xu, G. Brambilla, Manufacture of 3-D microfiber coil resonators, IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).Google Scholar
  73. 73.
    M. Sumetsky, Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators, J. Lightwave Technol. 26, 21–27 (2008).Google Scholar
  74. 74.
    Y. H. Li, L. M. Tong, Mach-Zehnder interferometers assembled with optical microfibers or nanofibers, Opt. Lett. 33, 303–305 (2008).Google Scholar
  75. 75.
    X. S. Jiang, Y. Chen, G. Vienne, L. M. Tong, All-fiber add-drop filters based on microfiber knot resonators, Opt. Lett. 32, 1710–1712 (2007).Google Scholar
  76. 76.
    Y. Chen, Z. Ma, Q. Yang, L. M. Tong, Compact optical short-pass filters based on microfibers, Opt. Lett. 33, 2565–2567 (2008).Google Scholar
  77. 77.
    Y. Wu, X. Zeng, C. L. Hou, J. Bai, G. G. Yang, A tunable all-fiber filter based on microfiber loop resonator, Appl. Phys. Lett. 92, 191112 (2008).Google Scholar
  78. 78.
    Y. H. Li, G. Vienne, X. S. Jiang, X. Y. Pan, X. Liu, P. F. Gu, L. M. Tong, Modeling rare-earth doped microfiber ring lasers, Opt. Express 14, 7073–7086 (2006).Google Scholar
  79. 79.
    X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, L. L. Hu, Demonstration of microfiber knot laser, Appl. Phys. Lett. 89, 143513 (2006).Google Scholar
  80. 80.
    X. S. Jiang, Q. H. Song, L. Xu, J. Fu, L. M. Tong, Microfiber knot dye laser based on the evanescent-wave-coupled gain, Appl. Phys. Lett. 90, 233501 (2007).Google Scholar
  81. 81.
    A. AlOrainy, Y. H. Li, L. M. Tong, Evaluation of quenching effects on silicabased erbium doped fiber micro-ring lasers, Opt. Commun. 281, 3000–3003 (2008).Google Scholar
  82. 82.
    J. Y. Lou, L. M. Tong, Z. Z. Ye, Modeling of silica nanowires for optical sensing, Opt. Express 13, 2135–2140 (2005).Google Scholar
  83. 83.
    P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels, Opt. Lett. 30, 1273–1275 (2005).Google Scholar
  84. 84.
    J. Villatoro, D. Monzón-Hernández, Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers, Opt. Express 13, 5087–5092 (2005).Google Scholar
  85. 85.
    W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, Highly sensitive fiber Bragg grating refractive index sensors, Appl. Phys. Lett. 86, 151122 (2005).Google Scholar
  86. 86.
    S. S. Wang, X. Y. Pan, L. M. Tong, Modeling of nanoparticle induced Rayleigh-Gans scattering for nanofiber optical sensing, Opt. Commun. 276, 293–297 (2007).Google Scholar
  87. 87.
    M. Sumetsky, R. S. Windeler, Y. Dulashko, X. D. Fan, Optical liquid ring resonator sensor, Opt. Express 15, 14376–14381 (2007).Google Scholar
  88. 88.
    L. Shi, Y. H. Xu, W. Tan, X. F. Chen, Simulation of optical microfiber loop resonators for ambient refractive index sensing, Sensors 7, 689–696 (2007).Google Scholar
  89. 89.
    F. Xu, P. Horak, G. Brambilla, Optical microfiber coil resonator refractometric sensor, Opt. Express 15, 7888–7893 (2007).Google Scholar
  90. 90.
    F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, Ultrasensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers, Opt. Express 15, 11952–11958 (2007).Google Scholar
  91. 91.
    X. Guo, L. M. Tong, Supported microfiber loops for optical sensing, Opt. Express 16, 14429–14434 (2008).Google Scholar
  92. 92.
    F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, An embedded optical nanowire loop resonator refractometric sensor, Opt. Express 16, 1062–1067 (2008).Google Scholar
  93. 93.
    L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, L. M. Tong, Fast detection of humidity with a subwavelength diameter fiber taper coated with gelatin film, Opt. Express 16, 13349–13353 (2008).Google Scholar
  94. 94.
    G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, L. M. Tong, Theoretical study of microfiber resonator devices exploiting a phase shift, J. Opt. A: Pure Appl. Opt. 10, 025303 (2008).Google Scholar
  95. 95.
    F. Xu, G. Brambilla, Demonstration of a refractometric sensor based on optical microfiber coil resonator, Appl. Phys. Lett. 92, 101126 (2008).Google Scholar
  96. 96.
    S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, Supercontinuum generation in submicron fibre Waveguides, Opt. Express 12, 2864–2869 (2004).Google Scholar
  97. 97.
    M. A. Foster, K. D. Moll, A. L. Gaeta, Optimal waveguide dimensions for nonlinear interactions, Opt. Express 12, 2880–2887 (2004).Google Scholar
  98. 98.
    M. A. Foster, A. L. Gaeta, Ultra-low threshold supercontinuum generation in sub-wavelength waveguides, Opt. Express 12, 3137–3143 (2004).Google Scholar
  99. 99.
    M. Kolesik, J. V. Moloney, Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations, Phys. Rev. E 70, 036604 (2004).Google Scholar
  100. 100.
    M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation, Appl. Phys. B 81, 363–367 (2005).Google Scholar
  101. 101.
    M. A. Foster, A. L. Gaeta, Q. Cao, D. Lee, R. Trebino, Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires, Opt. Express 13, 6848–6855 (2005).Google Scholar
  102. 102.
    A. Zheltikov, Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlin-earity of optical fibers and photonic wires, J. Opt. Soc. Am. B 22, 1100–1104 (2005).MathSciNetGoogle Scholar
  103. 103.
    R. R. Gattass, G. T. Svacha, L. M. Tong, E. Mazur, Supercontinuum generation in submicrometer diameter silica fibers, Opt. Express 14, 9408–9414 (2006).Google Scholar
  104. 104.
    G. Vienne, P. Grelu, Y. H. Li, L. M. Tong, Observation of a nonlinear microfiber resonator, Opt. Lett. 33, 1500–1502 (2008).Google Scholar
  105. 105.
    M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, Nonlinear optics in photonic nanowires, Opt. Express 16, 1300–1320 (2008).Google Scholar
  106. 106.
    S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical microfiber embedded in a hot rubidium vapor, Phys. Rev. Lett. 100, 233602 (2008).Google Scholar
  107. 107.
    V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, Atom trapping and guiding with a subwavelength-diameter optical fiber, Phys. Rev. A 70, 011401 (2004).Google Scholar
  108. 108.
    F. Le Kien, V. I. Balykin, K. Hakuta, Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber, Phys. Rev. A 70, 063403 (2004).Google Scholar
  109. 109.
    F. Le Kien, S. Dutta Gupta, V. I. Balykin, K. Hakuta, Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes, Phys. Rev. A, 72, 032509 (2005).Google Scholar
  110. 110.
    F. Le Kien, V. I. Balykin, K. Hakuta, State-insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber, J. Phys. Soc. Japan 74, 910–917 (2005).zbMATHGoogle Scholar
  111. 111.
    F. Le Kien, V. I. Balykin, K. Hakuta, Scattering of an evanescent light field by a single cesium atom near a nanofiber, Phys. Rev. A 73, 013819 (2006).Google Scholar
  112. 112.
    F. Le Kien, V. I. Balykin, K. Hakuta, Light-induced force and torque on an atom outside a nanofiber, Phys. Rev. A 74, 033412 (2006).Google Scholar
  113. 113.
    G. Sague, E. Vetsch, W. Alt, D. Meschede, A. Rauschenbeutel, Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions, Phys. Rev. Lett. 99, 163602 (2007).Google Scholar
  114. 114.
    J. Fu, X. Yin, N. Y. Li, L. M. Tong, Atom waveguide and 1D optical lattice using a two-color evanescent light field around an optical micro/nano-fiber, Chin. Opt. Lett. 6, 112–115 (2008).Google Scholar
  115. 115.
    K. P. Nayak, K. Hakuta, Single atoms on an optical nanofibre, New J. Phys. 10, 053003 (2008).Google Scholar
  116. 116.
    J. T. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32, 435–445 (1999).Google Scholar
  117. 117.
    C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires, Prog. Solid State Chem. 31, 5–147 (2003).Google Scholar
  118. 118.
    Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater. 15, 353–389 (2003).Google Scholar
  119. 119.
    M. Law, J. Goldberger, P. D. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 34, 83–122 (2004).Google Scholar
  120. 120.
    H. J. Fan, P. Werner, M. Zacharias, Semiconductor nanowires: From self-organization to patterned growth, Small 2, 700–717 (2006).Google Scholar
  121. 121.
    D. H. Reneker, A. L. Yarin, E. Zussman, H. Xu, Electrospinning of nanofibers from polymer solutions and melts, Adv. Appl. Mech. 41, 43–195 (2007).Google Scholar
  122. 122.
    K. Jayaraman, M. Kotaki, Y. Z. Zhang, X. M. Mo, S. Ramakrishna, Recent advances in polymer nanofibers, J. Nanosci. Nanotechnol. 4, 52–65 (2004).Google Scholar
  123. 123.
    A. N. Aleshin, Polymer nanofibers and nanotubes: Charge transport and device applications, Adv. Mater. 18, 17–27 (2006).Google Scholar
  124. 124.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63, 2223–2253 (2003).Google Scholar
  125. 125.
    A. Frenot, I. S. Chronakis, Polymer nanofibers assembled by electrospinning, Curr. Opin. Colloid Interface Sci. 8, 64–75 (2003).Google Scholar
  126. 126.
    S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, R. W. Cohn, Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers, Nano Lett. 4, 1931–1937 (2004).Google Scholar
  127. 127.
    H. Liu, J. B. Edel, L. M. Bellan, H. G. Craighead, Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots, Small 2, 495–499 (2006).Google Scholar
  128. 128.
    Q. Yang, X. S. Jiang, F. X. Gu, Z. Ma, J. Y. Zhang, L. M. Tong, Polymer micro or nanofibers for optical device applications, J. Appl. Polymer Sci. 110, 1080–1084 (2008).Google Scholar
  129. 129.
    F. X. Gu, L. Zhang, X. F. Yin, L. M. Tong, Polymer single-nanowire optical sensors, Nano Lett. 8, 2757–2761 (2008).Google Scholar
  130. 130.
    X. B. Xing, H. Zhu, Y. Q. Wang, B. J. Li, Ultracompact photonic coupling splitters twisted by PTT nanowires, Nano Lett. 8, 2839–2843 (2008).Google Scholar
  131. 131.
    M. L. Guo, J. C. Shi, B. J. Li, Polymer-based micro/nanowire structures for three-dimensional photonic integrations, Opt. Lett. 33, 2104–2106 (2008).Google Scholar
  132. 132.
    B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, New York, 1991.Google Scholar
  133. 133.
    A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, 1998.Google Scholar
  134. 134.
    A. W. Snyder, J. D. Love, Optical waveguide theory, Chapman and Hall, New York, 1983.Google Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Limin Tong
    • 1
  • Michael Sumetsky
    • 2
  1. 1.Department of Optical EngineeringZhejiang UniversityHangzhouChina
  2. 2.OFS LaboratoriesSomersetUSA

Personalised recommendations