Abstract
Mizar is the name of a formal language derived from informal mathematics and computer software that enables proof-checking of texts written in that language. The system has been actively developed since 1970s, growing into a popular proof assistant accompanied with a huge repository of formalized mathematical knowledge. In this short overview, we give an outline of the key features of the Mizar language, the ideas and theory behind the system, its main applications, and current development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 119–132. Springer, Heidelberg (2003)
Borak, E., Zalewska, A.: Mizar course in logic and set theory. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS, vol. 4573, pp. 191–204. Springer, Heidelberg (2007)
Corbineau, P.: A declarative language for the Coq proof assistant. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84. Springer, Heidelberg (2008)
Fitch, F.B.: Symbolic Logic. An Introduction. The Ronald Press Company (1952)
Harrison, J.: A Mizar Mode for HOL. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 203–220. Springer, Heidelberg (1996)
Jaśkowski, S.: On the rules of supposition in formal logic. Studia Logica 1 (1934)
Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mechanized Mathematics and Its Applications 4(1), 3–24 (2005)
Mizar home page: http://mizar.org
Naumowicz, A.: Teaching How to Write a Proof. In: Formed 2008: Formal Methods in Computer Science Education, pp. 91–100 (2008)
Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004)
Ono, K.: On a practical way of describing formal deductions. Nagoya Mathematical Journal 21 (1962)
QED Manifesto: http://www.rbjones.com/rbjpub/logic/qedres00.htm
Syme, D.: Three tactic theorem proving. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 203–220. Springer, Heidelberg (1999)
Trybulec, A.: Tarski Grothendieck set theory. Formalized Mathematics 1(1), 9–11 (1990)
Urban, J.: XML-izing Mizar: Making Semantic Processing and Presentation of MML Easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS, vol. 3863, pp. 346–360. Springer, Heidelberg (2006)
Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. Journal of Automated Reasoning 29(3-4), 389–411 (2002)
Wiedijk, F.: Formal Proof Sketches. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 378–393. Springer, Heidelberg (2004)
Wiedijk, F.: Mizar Light for HOL Light. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 378–393. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Naumowicz, A., Korniłowicz, A. (2009). A Brief Overview of Mizar . In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2009. Lecture Notes in Computer Science, vol 5674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03359-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-03359-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03358-2
Online ISBN: 978-3-642-03359-9
eBook Packages: Computer ScienceComputer Science (R0)