Skip to main content

A Brief Overview of Mizar

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5674))

Included in the following conference series:

Abstract

Mizar is the name of a formal language derived from informal mathematics and computer software that enables proof-checking of texts written in that language. The system has been actively developed since 1970s, growing into a popular proof assistant accompanied with a huge repository of formalized mathematical knowledge. In this short overview, we give an outline of the key features of the Mizar language, the ideas and theory behind the system, its main applications, and current development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 119–132. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Borak, E., Zalewska, A.: Mizar course in logic and set theory. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS, vol. 4573, pp. 191–204. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Corbineau, P.: A declarative language for the Coq proof assistant. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Fitch, F.B.: Symbolic Logic. An Introduction. The Ronald Press Company (1952)

    Google Scholar 

  5. Harrison, J.: A Mizar Mode for HOL. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 203–220. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Jaśkowski, S.: On the rules of supposition in formal logic. Studia Logica 1 (1934)

    Google Scholar 

  7. Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mechanized Mathematics and Its Applications 4(1), 3–24 (2005)

    Google Scholar 

  8. Mizar home page: http://mizar.org

  9. Naumowicz, A.: Teaching How to Write a Proof. In: Formed 2008: Formal Methods in Computer Science Education, pp. 91–100 (2008)

    Google Scholar 

  10. Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Ono, K.: On a practical way of describing formal deductions. Nagoya Mathematical Journal 21 (1962)

    Google Scholar 

  12. QED Manifesto: http://www.rbjones.com/rbjpub/logic/qedres00.htm

  13. Syme, D.: Three tactic theorem proving. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 203–220. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Trybulec, A.: Tarski Grothendieck set theory. Formalized Mathematics 1(1), 9–11 (1990)

    Google Scholar 

  15. Urban, J.: XML-izing Mizar: Making Semantic Processing and Presentation of MML Easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS, vol. 3863, pp. 346–360. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. Journal of Automated Reasoning 29(3-4), 389–411 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wiedijk, F.: Formal Proof Sketches. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 378–393. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Wiedijk, F.: Mizar Light for HOL Light. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 378–393. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naumowicz, A., Korniłowicz, A. (2009). A Brief Overview of Mizar . In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2009. Lecture Notes in Computer Science, vol 5674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03359-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03359-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03358-2

  • Online ISBN: 978-3-642-03359-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics