Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Cryptology - CRYPTO 2009
  3. Conference paper

How to Hash into Elliptic Curves

  • Conference paper
  • pp 303–316
  • Cite this conference paper
Advances in Cryptology - CRYPTO 2009 (CRYPTO 2009)
How to Hash into Elliptic Curves
  • Thomas Icart17 

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5677))

Included in the following conference series:

  • Annual International Cryptology Conference
  • 4066 Accesses

  • 76 Citations

Abstract

We describe a new explicit function that given an elliptic curve E defined over \(\mathbb F_{p^n}\), maps elements of \(\mathbb F_{p^n}\) into E in deterministic polynomial time and in a constant number of operations over \(\mathbb F_{p^n}\). The function requires to compute a cube root. As an application we show how to hash deterministically into an elliptic curve.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

SwiftEC: Shallue-van de Woestijne Indifferentiable Function to Elliptic Curves

Chapter © 2022

Improved elliptic curve hashing and point representation

Article 24 October 2016

Families of Fast Elliptic Curves from ℚ-curves

Chapter © 2013

References

  1. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptology 17(4), 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, C., Montague, P., Nguyen, K.Q.: Elliptic curve based password authenticated key exchange protocols. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 487–501. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: The twist-augmented technique for key exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Icart, T.: How to hash into an elliptic-curve. Publicly, http://eprint.iacr.org/2009/226

  7. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev. 26(5), 5–26 (1996)

    Article  Google Scholar 

  8. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms, 512 pages. Addison-Wesley Publishing Company, Reading (1996)

    MATH  Google Scholar 

  10. Shallue, A., van de Woestijne, C.: Construction of rational points on elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Shoup, V.: Ntl, Number Theory C++ Library, http://www.shoup.net/ntl/

  12. Shoup, V.: A new polynomial factorization algorithm and its implementation. J. Symb. Comput. 20(4), 363–397 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Skalba, M.: Points on elliptic curves over finite fields. Acta Arith. 117, 293–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Sagem Sécurité, Université du Luxembourg, Luxembourg

    Thomas Icart

Authors
  1. Thomas Icart
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. IBM Research, Hawthorne, NY, USA

    Shai Halevi

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Icart, T. (2009). How to Hash into Elliptic Curves. In: Halevi, S. (eds) Advances in Cryptology - CRYPTO 2009. CRYPTO 2009. Lecture Notes in Computer Science, vol 5677. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03356-8_18

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-03356-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03355-1

  • Online ISBN: 978-3-642-03356-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

103.230.141.187

Not affiliated

Springer Nature

© 2024 Springer Nature