Skip to main content

Discovering Knowledge from Multi-relational Data Based on Information Retrieval Theory

  • Conference paper
Advanced Data Mining and Applications (ADMA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5678))

Included in the following conference series:

  • 2195 Accesses

Abstract

Although the TF-IDF weighted frequency matrix (vector space model) has been widely studied and used in document clustering or document categorisation, there has been no attempt to extend this application to relational data that contain one-to-many associations between records. This paper explains the rationale for using TF-IDF (term frequency inverse document frequency), a technique for weighting data attributes, borrowed from Information Retrieval theory, to summarise datasets stored in a multi-relational setting with one-to-many relationships. A novel data summarisation algorithm based on TF-IDF is introduced, which is referred to as Dynamic Aggregation of Relational Attributes (DARA). The DARA algorithm applies clustering techniques in order to summarise these datasets. The experimental results show that using the DARA algorithm finds solutions with much greater accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfred, R.: A genetic-based feature construction method for data summarisation. In: Tang, C., Ling, C.X., Zhou, X., Cercone, N.J., Li, X. (eds.) ADMA 2008. LNCS, vol. 5139, pp. 39–50. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Alfred, R., Kazakov, D.: Clustering Approach to Generalised Pattern Identification Based on Multi-Instanced Objects with DARA. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Alfred, R., Kazakov, D.: Discretisation Numbers for Multiple-Instances Problem in Relational Database. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp. 55–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Blockeel, H., Raedt, L.D.: Top-Down Induction of First-Order Logical Decision Trees. Artif. Intell. 101(1-2), 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blockeel, H., Sebag, M.: Scalability and Efficiency in Multi-Relational Data Mining. In: SIGKDD Explorations, vol. 5(1), pp. 17–30 (2003)

    Google Scholar 

  6. Finn, P.W., Muggleton, S., Page, D., Srinivasan, A.: Pharmacophore Discovery Using the Inductive Logic Programming System PROGOL. Machine Learning 30(2-3), 241–270 (1998)

    Article  Google Scholar 

  7. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  8. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  9. Kirsten, M., Wrobel, S.: Relational Distance-Based Clustering. In: 8th International Conference on Inductive Logic Programming, pp. 261–270 (1998)

    Google Scholar 

  10. Kramer, S., Lavrac, N., Flach, P.: Propositionalisation Approaches to Relational Data Mining. In: Deroski, S., Lavrac, N. (eds.) Relational Data mining. Springer, Heidelberg (2001)

    Google Scholar 

  11. Krogel, M.A., Wrobel, S.: Transformation-Based Learning Using Multirelational Aggregation. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS, vol. 2157, pp. 142–155. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning (1993)

    Google Scholar 

  13. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill Book Company, New York (1984)

    MATH  Google Scholar 

  14. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  15. Srinivasan, A., Muggleton, S., Sternberg, M.J.E., King, R.D.: Theories for Mutagenicity: A Study in First-Order and Feature-Based Induction. Artif. Intell. 85(1-2), 277–299 (1996)

    Article  Google Scholar 

  16. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)

    Google Scholar 

  17. Witten, I.H., Frank, E.: Data Mining: PracticalMachine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alfred, R. (2009). Discovering Knowledge from Multi-relational Data Based on Information Retrieval Theory. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2009. Lecture Notes in Computer Science(), vol 5678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03348-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03348-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03347-6

  • Online ISBN: 978-3-642-03348-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics