Advertisement

Enhanced Target Collision Resistant Hash Functions Revisited

  • Mohammad Reza Reyhanitabar
  • Willy Susilo
  • Yi Mu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5665)

Abstract

Enhanced Target Collision Resistance (eTCR) property for a hash function was put forth by Halevi and Krawczyk in Crypto 2006, in conjunction with the randomized hashing mode that is used to realize such a hash function family. eTCR is a strengthened variant of the well-known TCR (or UOWHF) property for a hash function family (i.e. a dedicated-key hash function). The contributions of this paper are twofold. First, we compare the new eTCR property with the well-known collision resistance (CR) property, where both properties are considered for a dedicated-key hash function. We show there is a separation between the two notions, that is in general, eTCR property cannot be claimed to be weaker (or stronger) than CR property for any arbitrary dedicated-key hash function. Second, we consider the problem of eTCR property preserving domain extension. We study several domain extension methods for this purpose, including (Plain, Strengthened, and Prefix-free) Merkle-Damgård, Randomized Hashing (considered in dedicated-key hash setting), Shoup, Enveloped Shoup, XOR Linear Hash (XLH), and Linear Hash (LH) methods. Interestingly, we show that the only eTCR preserving method is a nested variant of LH which has a drawback of having high key expansion factor. Therefore, it is interesting to design a new and efficient eTCR preserving domain extension in the standard model.

Keywords

Hash Functions CR TCR eTCR Domain Extension 

References

  1. 1.
    Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving Iterated Hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and NMAC using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    den Boer, B., Bosselaers, A.: Collisions for the Compressin Function of MD5. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  9. 9.
    Dodis, Y., Puniya, P.: Getting the Best Out of Existing Hash Functions; or What if We Are Stuck with SHA? In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 156–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hashing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Maurer, U.M., Sjödin, J.: Single-Key AIL-MACs from Any FIL-MAC. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 472–484. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Mironov, I.: Hash Functions: From Merkle-Damgård to Shoup. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 166–181. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applications. In: STOC 1989, pp. 33–43. ACM, New York (1989)Google Scholar
  15. 15.
    National Institute of Standards and Technology. Cryptographic Hash Algorithm Competition, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
  16. 16.
    National Institute of Standards and Technology. Draft NIST SP 800-106: Randomized Hashing for Digital Signatures (August 2008), http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-106
  17. 17.
    Preneel, B.: The State of Cryptographic Hash Functions. In: Damgård, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 158–182. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Reyhanitabar, M.R., Susilo, W., Mu, Y.: Enhanced Target Collision Resistant Hash Functions Revisited. IACR ePrint Archive, Report 2009/051 (2009), http://eprint.iacr.org/2009/051.pdf
  19. 19.
    Rogaway, P.: Formalizing Human Ignorance: Collision-Resistant Hashing without the Keys. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Simon, D.R.: Finding Collisions on a One-Way Street: Can Secure Hash Functions be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mohammad Reza Reyhanitabar
    • 1
  • Willy Susilo
    • 1
  • Yi Mu
    • 1
  1. 1.Centre for Computer and Information Security Research, School of Computer Science and Software EngineeringUniversity of WollongongAustralia

Personalised recommendations