Multidimensional Extension of Matsui’s Algorithm 2

  • Miia Hermelin
  • Joo Yeon Cho
  • Kaisa Nyberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5665)


Matsui’s one-dimensional Alg. 2 can be used for recovering bits of the last round key of a block cipher. In this paper a truly multidimensional extension of Alg. 2 based on established statistical theory is presented. Two possible methods, an optimal method based on the log-likelihood ratio and a χ2-based goodness-of-fit test are compared in theory and by practical experiments on reduced round Serpent. The theory of advantage by Selçuk is generalised in multiple dimensions and the advantages and data, time and memory complexities for both methods are derived.


Boolean Function Data Complexity Block Cipher Search Phase Linear Cryptanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Kaliski Jr., B.S., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Biryukov, A., Cannière, C.D., Quisquater, M.: On Multiple Linear Approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Hermelin, M., Nyberg, K., Cho, J.Y.: Multidimensional Linear Cryptanalysis of Reduced Round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Junod, P.: On the optimality of linear, differential and sequential distingishers. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 17–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Baignères, T., Vaudenay, S.: The Complexity of Distinguishing Distributions (Invited Talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 210–222. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. Journal of Cryptology 21(1), 131–147 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hermelin, M., Cho, J.Y., Nyberg, K.: Statistical Tests for Key Recovery Using Multidimensional Extension of Matsui’s Algorithm 1. In: EUROCRYPT 2009 - poster session (2009)Google Scholar
  10. 10.
    Cramér, H.: Mathematical Methods of Statistics, 7th edn. Princeton Mathematical Series. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  11. 11.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley Series in Telecommunications and Signal Processing. Wiley-Interscience, Hoboken (2006)zbMATHGoogle Scholar
  12. 12.
    Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: CCS 1996: Proceedings of the 3rd ACM conference on Computer and communications security, pp. 139–147. ACM, New York (1996)Google Scholar
  13. 13.
    Harpes, C., Kramer, G.G., Massey, J.L.: A Generalization of Linear Cryptanalysis and the Applicability of Matsui’s Piling-Up Lemma. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Junod, P., Vaudenay, S.: Optimal Key Ranking Procedures in a Statistical Cryptanalysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 235–246. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Drost, F., Kallenberg, W., Moore, D.S., Oosterhoff, J.: Power Approximations to Multinomial Tests of Fit. Journal of the American Statistican Association 84(405), 130–141 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Collard, B., Standaert, F.X., Quisquater, J.J.: Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 382–397. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    David, H.A.: Order Statistics, 1st edn. A Wiley Publication in Applied Statistics. John Wiley & Sons, Inc., Chichester (1970)zbMATHGoogle Scholar
  18. 18.
    Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 219–238. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Miia Hermelin
    • 1
  • Joo Yeon Cho
    • 1
  • Kaisa Nyberg
    • 1
    • 2
  1. 1.Helsinki University of TechnologyFinland
  2. 2.Nokia Research CenterFinland

Personalised recommendations