Advertisement

Algebraic Techniques in Differential Cryptanalysis

  • Martin Albrecht
  • Carlos Cid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5665)

Abstract

In this paper we propose a new cryptanalytic method against block ciphers, which combines both algebraic and statistical techniques. More specifically, we show how to use algebraic relations arising from differential characteristics to speed up and improve key-recovery differential attacks against block ciphers. To illustrate the new technique, we apply algebraic techniques to mount differential attacks against round reduced variants of Present-128.

Keywords

Block Cipher Advance Encryption Standard Algebraic Technique Algebraic Attack Linear Cryptanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bard, G.V.: Algorithms for Solving Linear and Polynomial Systems of Equations over Finite Fields with Applications to Cryptanalysis. PhD thesis, University of Maryland (2007)Google Scholar
  2. 2.
    Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers. IACR ePrint Archive, Report 2007/024 (2007), http://eprint.iacr.org/2007/024.pdf
  3. 3.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  5. 5.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007), http://www.crypto.rub.de/imperia/md/content/texte/publications/conferences/present_ches2007.pdfCrossRefGoogle Scholar
  7. 7.
    Bosma, W., Cannon, J., Playoust, C.: The MAGMA Algebra System I: The User Language. Journal of Symbolic Computation 24, 235–265 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner basis computations with Boolean polynomials. In: Electronic Proceedings of MEGA 2007 (2007), http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf
  9. 9.
    Cid, C., Murphy, S., Robshaw, M.: Algebraic Aspects of the Advanced Encryption Standard. Springer, Heidelberg (2006)MATHGoogle Scholar
  10. 10.
    Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 174–183 (1996), http://www.cse.yorku.ca/~jeff/research/proof_systems/grobner.ps
  11. 11.
    Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 152–169. Springer, Heidelberg (2007), IACR ePrint Archive, Report 2006/402, http://eprint.iacr.org/2006/402.pdfCrossRefGoogle Scholar
  12. 12.
    Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. IACR ePrint Archive, Report 2002/044 (2002), http://eprint.iacr.org/2002/044.pdf
  15. 15.
    Daemen, J., Rijmen, V.: The design of Rijndael: AES - the Advanced Encryption Standard. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Een, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2003), http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/CrossRefGoogle Scholar
  17. 17.
    Faugère, J.-C.: A New Efficient algorithm for Computing Gröbner Basis, F4 (1999), http://modular.ucsd.edu/129-05/refs/faugere_f4.pdf
  18. 18.
    Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero (F5). In: Proceedings of ISSAC, pp. 75–83. ACM Press, New York (2002)Google Scholar
  19. 19.
    Faugère, J.-C.: Gröbner bases: Applications in Cryptology. FSE 2007 – Invited Talk (2007), http://fse2007.uni.lu/v-misc.html
  20. 20.
    Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2005), http://www.singular.uni-kl.de
  21. 21.
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1995. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  22. 22.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1993), http://homes.esat.kuleuven.be/~abiryuko/Cryptan/matsui_des.PDFCrossRefGoogle Scholar
  23. 23.
    Murphy, S., Robshaw, M.: Essential Algebraic Structure Within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002), http://www.isg.rhul.ac.uk/~mrobshaw/rijndael/aes-crypto.pdfCrossRefGoogle Scholar
  24. 24.
    Raddum, H., Semaev, I.: New technique for solving sparse equation systems. IACR ePrint Archive, Report 2006/475 (2006), http://eprint.iacr.org/2006/475.pdf
  25. 25.
    The SAGE Group. SAGE Mathematics Software (Version 3.3) (2008), http://www.sagemath.org
  26. 26.
    Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999), http://www.cs.berkeley.edu/~daw/papers/boomerang-fse99.psCrossRefGoogle Scholar
  27. 27.
    Wang, M.: Differential Cryptanalysis of reduced-round PRESENT. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Wang, M.: Private communication: 24 differential characteristics for 14-round present we have found (2008)Google Scholar
  29. 29.
    Yang, B.-Y., Chen, J.-M., Courtois, N.T.: On Asymptotic Security Estimates in XL and Gröbner Bases-Related Algebraic Cryptanalysis. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Albrecht
    • 1
  • Carlos Cid
    • 1
  1. 1.Information Security Group, Royal HollowayUniversity of LondonEghamUnited Kingdom

Personalised recommendations