Skip to main content

Ultraviolet Radiation and Its Interaction with Air Pollution

  • Chapter
UV Radiation in Global Climate Change

Abstract

This chapter contains the methodology, along with study examples, that show the types of interactions that the sun’s ultraviolet (UV) spectrum has with the various pollutants in the earth’s atmosphere, predominantly those in the troposphere. In the context of this chapter, the absorption of UV by gaseous pollutants (stratospheric ozone is not considered a pollutant) has been observed to present a much smaller problem than originally thought. Additionally, aerosols, particularly black carbon, play a much larger role. One must keep in mind that only two studies are presented here in determining site specific UV transmissions to the surface. Each site has its own variables, not the least of which is the differing combinations of scattering and absorbing aerosols. There is a great need to characterize more sites and identify aerosol types according to their chemical species and by doing so, relate the species to the single scatter albedo and aerosol optical depth. It will then become possible to transfer this ground-based knowledge to satellite observation points so that predictions of surface UV can become more accurate in protecting our environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, and Welton EJ (2000) Reduction of Tropical Cloudiness by Soot. Science 288: 1042–1047

    Article  CAS  Google Scholar 

  • Arya SP (1999) Air Pollution Meteorology and Dispersion. Oxford University Press, New York, p.301

    Google Scholar 

  • Bahrmann CP, and Saxena VK (1998) The influence of air mass history on black carbon concentrations in the southeastern US. J. Geophys. Res. 103: 23153–23161

    Article  CAS  Google Scholar 

  • Bais AF, Zerefos CS, Meleti C, and Ziomas IC (1993) Spectral measurements of solar UVB radiation and its relation to total ozone, SO2, and clouds. J. Geophys. Res. 98: 5199–5208

    Article  CAS  Google Scholar 

  • Ball RJ, and Robinson GP (1982) The origin of haze in the central United States and its effect on solar radiation. J. Appl. Meteorol. 21: 171–188

    Article  Google Scholar 

  • Barnard WF (2001) Daily Surface UV Exposure and Its Relationship to Surface Pollutant Measurements. PhD. Thesis

    Google Scholar 

  • Barnard WF, Saxena VK, Wenny BN, and DeLuisi JJ (2003) Daily surface UV exposure and its relationship to surface pollutant measurements, Journal of the Air & Waste Management Association, Vol 53

    Google Scholar 

  • Blaustein AR, and Wake DB (1995) The puzzle of declining amphibian populations. Scientific American 52–57

    Google Scholar 

  • Blumthaler M, Schreder J, and Grobner J (1996) UV sky radiance influenced by aerosols and tropospheric ozone-measurements and modeling. In: Smith WL, Stamnes K (eds) IRS’ 96: Current Problems in Atmospheric Radiation. Proc. Int. Radiation Symp., Fairbanks, AK, Deepak Publishing, Hampton, VA, pp.853–856

    Google Scholar 

  • Bojkov RD, Fioletov VE, and Diaz SB (1995) The relationship between solar UV irradiance and total ozone from observations over southern Argentina. Geophysics Research Letters 22: 1249–1252

    Article  CAS  Google Scholar 

  • Booker FL, Burkey KO, and Pursley WA (2007) Elevated carbon dioxide and ozone effects in peanut. I. Gas-exchange, biomass, and leaf chemistry. Crop Science 47: 1475–1487

    Article  CAS  Google Scholar 

  • Bruhl C, and Crutzen PJ (1989) On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation. Geophys. Res. Lett. 16: 703–706

    Article  Google Scholar 

  • Cachorro VE, Gonzalez MJ, De Frutos AM, and Casanova JL (1989) Fitting Angstrom’s formula to spectrally resolved aerosol optical thickness. Atmos. Environ. 23: 265–270

    Article  CAS  Google Scholar 

  • Cadle SH, and Mulawa PA (1990) Atmospheric carbonaceous species measurement methods comparison study: general motors results. Aerosol Science Technology 12: 128–141

    Article  Google Scholar 

  • Charlock TP, Kondratyev K, and Prokofyev M (1993) Review of recent research on the climatic effect of aerosols. In: Jennings SG (ed) Aerosol Effects on Climate, Univ. of Arizona, Tucson, pp.233–274

    Google Scholar 

  • Charlson, RJ, Covert DS, and Larson TV (1984) Observation of the effect of humidity on light scattering by aerosols. In: Ruhnke L, Deepak A (eds) Hygroscopic Aerosols. Deepak Publishing, Hampton, VA

    Google Scholar 

  • Charlson RJ, Langner J, Rodhe H, Leovy CB, and Warren SG (1991) Perturbation of the Northern Hemispheric radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43B: 152–163

    Google Scholar 

  • Coakley JA, Jr, Cess RD, and Yurevich FB (1983) The effect of tropospheric aerosols on the earth’s radiation budget: A parameterization for climate models. J. Atmos. Sci. 40: 116–138

    Article  CAS  Google Scholar 

  • Dave JV (1968) Subroutines for computing the parameters of electromagnetic radiation scattered by a sphere. IBM Scientific Center, Palo Alto, CA, Rep. No. 320–3237

    Google Scholar 

  • Deininger CK, and Saxena VK (1997) A validation of back trajectories of air masses by principal component analysis of ion concentrations in cloud water. Atmos. Environ. 30: 295–300

    Article  Google Scholar 

  • Dubovik O, Holben BN, Kaufman YJ, Yamasoe M, Smirnov A, Tanre D, and Slutsker I (1998) Single-scattering albedo of smoke retrieved from the sky radiance and solar transmittance measured from the ground. J. Geophys. Res. 103: 31903–31923

    Article  Google Scholar 

  • Dutton EG, Reddy P, Ryan S, and DeLuisi JJ (1994) Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992. J. Geophys. Res. 99: 8295–8306

    Article  Google Scholar 

  • Estupinan JG, Raman S, Crescenti GH, Streicher JJ, and Barnard WF (1996) Effects of clouds and haze on UV-B radiation. J. Geophys. Res. 101: 16807–16816

    Article  CAS  Google Scholar 

  • Fioletov VE, and Evans WFJ (1997) The influence of ozone and other factors on surface radiation Ozone Science: a Canadian Perspective on the Changing Ozone Layer. University of Toronto Press, Toronto, pp.73–90

    Google Scholar 

  • Flowers EC, McCormick RA, and Kurfis KR (1969) Atmospheric turbidity over the United States, 1961–1966. J. Appl. Meteor. 8: 955–962

    Article  Google Scholar 

  • Frederick JE, Koob EK, Alberts AD, and Weatherhead EC (1993) Empirical studies of tropospheric transmission in the ultraviolet: broadband measurements. J. Appl. Meteor. 32: 1883–1892

    Article  Google Scholar 

  • Frederick JE, and Steele HD (1995) The transmission of sunlight through cloudy skies: an analysis based on standard meteorological information. J. Appl. Meteorol. 34: 2755–2761

    Article  Google Scholar 

  • Goldberg ED (1985) Black carbon in the environment: Properties and distribution. Wiley Interscience

    Google Scholar 

  • Gundel LA, Dod RL, Rosen H, and Novakov T (1984) The relationship between optical attenuation and black carbon concentration for ambient and source particles. Science Total Environment 36: 197–202

    Article  CAS  Google Scholar 

  • Hansen ADA, and Rosen H (1990) Individual measurements of the emission factor of aerosol black carbon in automobile plumes. Journal of Air Waste Management Association 40: 1654–1657

    CAS  Google Scholar 

  • Hansen JE, Lacis AA, Lee P, and Lang WC (1979) Climatic effects of atmospheric aerosols. In: Proc. Conf. on Aerosols: Urban and rural characteristics, source and transport studies, 1977. New York Academy of Sciences, pp.575–587

    Google Scholar 

  • Hansen J, Sato M, Lacis A, and Ruedy R (1997) The missing climate forcing. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 352: 231–240

    Article  CAS  Google Scholar 

  • Harrison L, and Michalsky J (1994) Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt. 33: 5126–5132

    Article  Google Scholar 

  • Hegg DA, Ferek RJ, and Hobbs PV (1993) Light scattering and cloud condensation nucleus activity of sulfate aerosol measured over the Northeast Atlantic Ocean. J. Geophys. Res. 98: 14887–14894

    Article  Google Scholar 

  • Ilyas M (1987) Effect of cloudiness on solar ultraviolet radiation reaching the surface. Atmos. Environ. 21: 1483–1484

    Google Scholar 

  • Im J-S, Saxena VK, and Wenny BN (2001) Temporal trends of black carbon concentrations and regional climate forcing in the southeastern United States. Atmospheric Environment 35: 3293–3302

    Article  CAS  Google Scholar 

  • Kerr JB, and McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262: 1032–1034

    Article  CAS  Google Scholar 

  • Kiehl JT, and Rodhe H (1995) Modeling geographical and seasonal forcing due to aerosols. In: Charlson RJ, Heintzenberg J (eds) Aerosol Forcing of Climate. John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Kiehl JT, Schneider TL, Rasch PJ, Barth MC, and Wong J (2000) Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research, Community Climate Model, Version 3. J. Geophys. Res.-Atmos. 105: 1441–1457

    Article  CAS  Google Scholar 

  • Lacis A, Hansen J, and Sato M (1992) Climate forcing by stratospheric aerosols. Geophys. Res. Lett. 19: 1607–1610

    Article  Google Scholar 

  • Lacis AA, and Mishchenko MI (1995) Climate forcing, cloud sensitivity, and climate response: a radiative modeling perspective on atmospheric aerosols. In: Charlson RJ, Heintzenberg J (eds) Aerosol Forcing of Climate. John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Lenoble J (1993) Atmospheric Radiative Transfer. A Deepak Publishing, Hampton, VA, p.532

    Google Scholar 

  • Liou K (1980) An introduction to atmospheric radiation Kuo-Nanliou. An International Geophysics Series. Volume 26, Academic Press, San Diego, CA, p.392

    Google Scholar 

  • Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, and Cachier H (1996) A global threedimensional model study of carbonaceous aerosols. J. Geophys. Res. 101: 19411–19432

    Article  CAS  Google Scholar 

  • Liu SC, McKeen SA, and Madronich S (1991) Effect of anthropogenic aerosols on biologically active ultraviolet radiation. Geophys. Res. Lett. 18: 2265–2268

    Article  CAS  Google Scholar 

  • Long CS, Miller AJ, Lee H-T, Wild JD, Przywarty RC, and Hufford D (1996) Ultraviolet index forecasts issued by the National Weather Service. Bull. Am. Meteorol. Soc. 77: 729–748

    Article  Google Scholar 

  • Lorente, J, Redano A, and DeCabo X (1994) Influence of urban aerosol on spectral solar irradiance. J. Appl. Meteor. 33: 406–415

    Article  Google Scholar 

  • Ma J, and Guicherit R (1997) Effects of stratospheric ozone depletion and tropospheric pollution on UVB radiation in the troposphere. J. Photochem. Photobio. 66: 346–355

    Article  CAS  Google Scholar 

  • Madronich S (1993) The atmosphere and UV-B radiation at ground level. In: Young AR (ed) Environmental UV Photobiology. Plenum Press, New York

    Google Scholar 

  • Madronich S, McKensie RL, Bjorn LO, and Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface. J. Photochem. Photobio. B46: 5–19

    Article  CAS  Google Scholar 

  • McKenzie RL, Matthews WA, and Johnson PV (1991) The relationship between erythemal UV and ozone, derived from spectral irradiance measurements. Geophys. Res. Lett. 18: 2269–2272

    Article  CAS  Google Scholar 

  • Mims FM (1995) Vanishing Frogs. Scientific American 273: 10

    Google Scholar 

  • Mims FM (1996) Biological effects of diminished UV and visible sunlight caused by severe air pollution. In: Smith WL, Stamnes K (eds) IRS’ 96: Current Problems in Atmospheric Radiation. Proc. Int. Radiation Symp., Fairbanks, AK, 19–24 August, 1996, Deepak Publishing, Hampton, VA, pp.905–908

    Google Scholar 

  • Mims FM, Barnard WF, Neuendorffer AC, and Labow GJ (1995) Unusually Low Ozone Detected Over South-Central U.S. EOS 76: 113–115

    Article  Google Scholar 

  • Ogren, JA, and Sheriden PJ (1996) Vertical and horizontal variability of aerosol single scattering albedo and hemispheric backscatter fraction over the United States. In: Proceedings of the 14th International Conference on Nucleation and Atmospheric Aerosols, Helsinki, Finland

    Google Scholar 

  • Penner JE, Dickinson RE, and O’Neill CA (1992) Effects of aerosol from biomass burning on the global radiation budget. Science 256: 1432–1434

    Article  CAS  Google Scholar 

  • Petters JL, Saxena VK, Slusser JR, Wenny BN, and Madronich S (2003) Aerosol single scattering albedo retrieved from measurements of surface UV irradiance and a radiative transfer model. J. Geophys. Res. 108(D9):4288, doi:10.1029/2002JD002360

    Article  Google Scholar 

  • Pueschel RF (1993) Potential climatic effects of anthropogenic aerosols. In: Jennings SG (ed) Aerosol Effects on Climate. Univ. of Arizona, Tucson, 110–132

    Google Scholar 

  • Reuder J, and Schwander H (1999) Aerosol effects on UV radiation in non-urban regions. J. Geophys. Res. 104: 4065–4077

    Article  CAS  Google Scholar 

  • Satheesh SK, and Ramanathan V (2000) Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature 405: 60–63

    Article  CAS  Google Scholar 

  • Saxena VK, and Menon S (1999) Sulfate-induced cooling in the Southeastern U.S.: An observational assessment. Geophys. Res. Lett. 26: 2489–2492

    Article  CAS  Google Scholar 

  • Schafer JS, Saxena VK, Wenny BN, Barnard W, and DeLuisi JJ (1996) Observed influence of clouds on ultraviolet-B radiation. Geophys. Res. Lett. 23: 2625–2628

    Article  CAS  Google Scholar 

  • Schwartz SE, Arnold F, Blanchet J-P, Durkee PA, Hoffman DJ, Hoppel WA, King MD, Lacis AA, Nakajima T, Ogren JA, Toon OB, and Wendisch M (1995) Group Report: Connections between aerosol properties and forcing of climate. In: Charlson RJ, Heintzenberg J (eds) Aerosol Forcing of Climate. John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Seckmeyer G, and McKenzie RL (1992) Elevated ultraviolet radiation in New Zealand (45°S) contrasted with Germany (48°N). Nature 359: 135–137

    Article  Google Scholar 

  • Stephens GL (1995) Review of atmospheric radiation: 1991–1994. Reviews of Geophysics, Supplement, pp.785–794

    Google Scholar 

  • Ulman JC, and Saxena VK (1997) Impact of air mass histories on the chemical climate of Mount Mitchell, North Carolina. J. Geophys. Res. 102: 25451–25465

    Article  CAS  Google Scholar 

  • Varotsos CA, and Kondratyev KY (1995) On the relationship between total ozone and solar ultraviolet radiation at St Petersburg, Russia. Geophys. Res. Lett. 22: 3481–3484

    Article  Google Scholar 

  • Varotsos CA, Chronopoulos GJ, Katsikis S, and Sakellariou NK (1995) Further evidence of the role of air pollution on solar radiation reaching the ground. Int. J. Remote Sensing 16: 1883–1886

    Article  Google Scholar 

  • Waggoner AP, Weiss RE, Ahlquist NC, Covert DS, Will S, and Charlson RJ (1981) Optical characteristics of atmospheric aerosols. Atmos. Environ. 15: 1891–1909

    Article  CAS  Google Scholar 

  • Wang P, and Lenoble J (1994) Comparison between measurements and modeling of UV-B irradiance for clear sky: a case study. Appl. Opt. 33: 3964–3971

    Article  Google Scholar 

  • Wenny BN, Schafer JS, DeLuisi JJ, Saxena VK, Barnard WF, Petropavlovskikh IV, and Vergamini AJ (1998) A study of regional aerosol radiative properties and their effects on ultraviolet-B radiation. J. Geophys. Res. 103: 17083–17097

    Article  CAS  Google Scholar 

  • Whitby KY (1978) The physical characteristics of sulfur aerosols. Atmos. Environ. 12: 135–159

    Article  CAS  Google Scholar 

  • Wolff G (1981) Elemental carbon in the atmosphere. J. Air Pollut. Control Assoc. 31: 935–938

    Google Scholar 

  • Yu SC, Zender CS, and Saxena VK (2001) Direct radiative forcing and atmospheric absorption by boundary layer aerosols in the southeastern US: model estimates on the basis of new observations. Atmos. Environ. 35: 3967–3977

    Article  CAS  Google Scholar 

  • Yuen P-F, Hegg DA, and Larsen TV (1994) The effects of in-cloud sulfate production on light scattering properties of continental aerosols. J. Appl. Meteorol. 33: 848–854

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnard, W.F., Wenny, B.N. (2010). Ultraviolet Radiation and Its Interaction with Air Pollution. In: Gao, W., Slusser, J.R., Schmoldt, D.L. (eds) UV Radiation in Global Climate Change. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03313-1_11

Download citation

Publish with us

Policies and ethics