Skip to main content

Structure Evolution in Materials Studied by Time-Dependent Neutron Scattering

  • Chapter
  • First Online:
Book cover Studying Kinetics with Neutrons

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 161))

  • 863 Accesses

Summary

Time-resolved neutron scattering is a powerful tool to probe the bulk transformation process of materials in situ. The main drawback of the technique is that it is often flux limited. For reversible transformations this can in some cases be circumvented by applying stroboscopic methods. In cases where the structure of the material continuously evolves during repeated transformations the single-shot method needs to be applied. An overview is presented of the time-resolved neutron scattering studies performed on structure evolutions in materials. The examples cover a wide range of materials related to structural materials, magnetic materials and food studied by neutron diffraction, 3D neutron depolarisation and Spin-Echo SANS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1981)

    Google Scholar 

  2. D. Kashchiev, Nucleation, Basic Theory With Applications (Butterworth-Heinemann, Oxford, 2000)

    Google Scholar 

  3. B. Mutaftschiev, The Atomistic Nature of Crystal Growth (Springer, Berlin, 2001)

    Google Scholar 

  4. D. San Martin, N.H. van Dijk, E. Brück, S. Van der Zwaag, Materials Science and Engineering A 481–482, 757 (2008).

    Article  Google Scholar 

  5. J.L. Jones, A. Pramanick, J.C. Nino, S.M. Motahari, E. Üstündag, M.R. Daymond, E.C. Oliver, Appl. Phys. Lett. 90, 172909 (2007)

    Article  ADS  Google Scholar 

  6. M. Al-Jawad, P. Manuel, C. Ritter, S.H. Kilcoyne, J. Phys. Condens. Matter 18, 1449 (2006)

    Article  ADS  Google Scholar 

  7. H.G. Schimmel, J. Huot, L.C. Chapon, F.D. Tichelaar, F.M. Mulder, J. Am. Chem. Soc. 127, 14348 (2005)

    Article  Google Scholar 

  8. M. Wagemaker, W.J.H. Borghols, F.M. Mulder, J. Am. Chem. Soc. 129, 4323 (2007)

    Article  Google Scholar 

  9. B.D. Gaulin, S. Spooner, Y. Morii, Phys. Rev. Lett. 59, 668 (1987)

    Article  ADS  Google Scholar 

  10. N.P. Balsara, C. Lin, B. Hammouda, Phys. Rev. Lett. 77, 3847 (1996)

    Article  ADS  Google Scholar 

  11. A. Wiedenmann, U. Keiderling, K. Habicht, M. Russina, R. Gähler, Phys. Rev. Lett. 97, 057202 (2006)

    Article  ADS  Google Scholar 

  12. M. Nakano, M. Fukuda, T. Kudo, H. Endo, T. Handa, Phys. Rev. Lett. 98, 238101 (2007)

    Article  ADS  Google Scholar 

  13. T.J. Rappl, N.P. Balsaraa, J. Chem. Phys. 122, 214903 (2005)

    Article  ADS  Google Scholar 

  14. L.N. Arnaudov, R. de Vries, M.A. Cohen Stuart, J. Chem. Phys. 124, 084701 (2006)

    Article  ADS  Google Scholar 

  15. C.S. Pande, M.A. Imam, Mater. Sci. Eng. A 457, 69 (2007)

    Article  Google Scholar 

  16. R.M. Dalgliesh, Y.G.J. Lau, R.M. Richardson, D.J. Riley, Rev. Sci. Instrum. 75, 2955 (2004)

    Article  ADS  Google Scholar 

  17. T. Gutberlet, R. Steitz, G. Fragneto, B. Klösgen, J. Phys. Condens. Matter 16, S2469 (2004)

    Article  ADS  Google Scholar 

  18. P. Elter, G. Eckold, H. Gibhardt, W. Schmidt, A. Hoser, J. Phys. Condens. Matter 17, 6559 (2005)

    Article  ADS  Google Scholar 

  19. O. Waldmann, G. Carver, C. Dobe, D. Biner, A. Sieber, H.U. Güdel, H. Mutka, J. Ollivier, N.E. Chakov, Appl. Phys. Lett. 88, 042507 (2006)

    Article  ADS  Google Scholar 

  20. M.T. Rekveldt, Z. Physik 259, 391 (1973)

    Article  ADS  Google Scholar 

  21. M.T. Rekveldt, Phys. B 267268, 60 (1999)

    Article  Google Scholar 

  22. F.J. van Schaik, M. T. Rekveldt, Phys. Rev. Lett. 41, 767 (1978)

    Article  ADS  Google Scholar 

  23. S.G.E. te Velthuis, N.H. van Dijk, M.T. Rekveldt, J. Sietsma, S. van der Zwaag, Acta Mater. 48, 1105 (2000)

    Google Scholar 

  24. S.E. Offerman, L.J.G.W. van Wilderen, N.H. van Dijk, M.T. Rekveldt, J. Sietsma, S. van der Zwaag, Acta Mater. 51, 3927 (2003)

    Article  Google Scholar 

  25. H. Casalta, P. Schleger, C. Bellouard, M. Hennion, I. Mirebeau, G. Ehlers, B. Farago, J.-L. Dormann, M. Kelsch, M. Linde, F. Phillipp, Phys. Rev. Lett. 82, 1301 (1999)

    Article  ADS  Google Scholar 

  26. W.G. Bouwman, T.V. Krouglov, J. Plomp, S.V. Grigoriev, W.H. Kraan, M.T. Rekveldt, Phys. B 350, 140 (2004)

    Article  ADS  Google Scholar 

  27. M.T. Rekveldt, J. Plomp, W.G. Bouwman, W.H. Kraan, S. Grigoriev, M. Blaauw, Rev. Sci. Instrum. 76, 033901 (2005)

    Article  ADS  Google Scholar 

  28. M.T. Rekveldt, N.H. van Dijk, S.V. Grigoriev, W.H. Kraan, W.G. Bouwman, Rev. Sci. Instrum. 77, 073902 (2006)

    Article  ADS  Google Scholar 

  29. S.F. Nielsen, H.F. Poulsen, F. Beckmann, C. Thorning, J.A. Wert, Acta Mater. 51, 2407 (2003)

    Article  Google Scholar 

  30. R.H. Mathiessen, L. Arnberg, F. Mo1, T. Weitkamp, A. Snigirev, Phys. Rev. Lett. 83, 5062 (1999)

    Google Scholar 

  31. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, M.T. Rekveldt, S. van der Zwaag, Science 298, 1003 (2002)

    Article  ADS  Google Scholar 

  32. H.F. Poulsen, Three-Dimensional X-Ray Diffraction Microscopy, Mapping Polycrystals and their Dynamics (Springer, Berlin, 2004)

    Google Scholar 

  33. S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang, D. Juul Jensen, Science 305, 229 (2004)

    Article  ADS  Google Scholar 

  34. T. LaGrange, J. Mater. Sci. 41, 4440 (2006)

    Article  ADS  Google Scholar 

  35. M. Easton, D. StJohn, Metall. Mater. Trans. A 30, 1629 (1999)

    Google Scholar 

  36. N. Iqbal, N.H. van Dijk, V.W.J. Verhoeven, W. Montfrooij, T. Hansen, L. Katgerman, G.J. Kearley, Acta Mater. 51, 4497 (2003)

    Article  Google Scholar 

  37. N. Iqbal, N.H. van Dijk, V.W.J. Verhoeven, T. Hansen, L. Katgerman, G.J. Kearley, Mater. Sci. Eng. A 367, 82 (2004)

    Article  Google Scholar 

  38. N. Iqbal, N.H. van Dijk, T. Hansen, L. Katgerman, G.J. Kearley, Mater. Sci. Eng. A 386, 82 (2004)

    Google Scholar 

  39. T.C. Hansen, P.F. Henry, H.E. Fischer, J. Torregrossa, P. Convert, Meas. Sci. Technol. 19, 034001 (2008)

    Article  ADS  Google Scholar 

  40. N. Iqbal, N.H. van Dijk, C. Dewhurst, L. Katgerman, G.J. Kearley, Phys. B 350, e1011 (2004)

    Article  ADS  Google Scholar 

  41. N. Iqbal, N.H. van Dijk, S.E. Offerman, M.P. Moret, L. Katgerman, G.J. Kearley, Acta Mater. 53, 2875 (2005)

    Article  Google Scholar 

  42. N. Iqbal, N.H. van Dijk, S.E. Offerman, N. Geerlofs, M.P. Moret, L. Katgerman, G.J. Kearley, Mater. Sci. Eng. A 416, 18 (2006)

    Article  Google Scholar 

  43. R. Rosman, et al., Z. Physik B 79, 61 (1990); 81, 149 (1990)

    Google Scholar 

  44. S. Sakarya, N.H. van Dijk, E. Brück, Phys. Rev. B 71, 174417 (2005)

    Article  ADS  Google Scholar 

  45. E. Jimenez, N.H. van Dijk, W.H. Kraan, P.C.M. Gubbens, J. Isasi, R. Saez-Puche, J. Magn. Magn. Mater. 288, 1 (2005)

    Article  ADS  Google Scholar 

  46. S.G.E. te Velthuis, J. Sietsma, S. van der Zwaag, F.A.M. Maas, M.T. Rekveldt, Conference Proceedings Materials Solutions’97: Accelerated cooling/direct quenching steels, Indianapolis, USA, 15–18 September 1997, ed. by G.M. Davidson, (ASM International, Ohio, USA, 1997) p. 135

    Google Scholar 

  47. S.G.E. te Velthuis, M.T. Rekveldt, J. Sietsma, S. van der Zwaag, Phys. B 234236, 1027 (1997)

    Google Scholar 

  48. S.E. Offerman, L.J.G.W. van Wilderen, N.H. van Dijk, M.T. Rekveldt, J. Sietsma, S. van der Zwaag, Phys. B 335, 99 (2003)

    Article  ADS  Google Scholar 

  49. N.H. van Dijk, S.E. Offerman, J.C.P. Klaasse, J. Sietsma, S. van der Zwaag, J. Magn. Magn. Mater. 268, 40 (2004)

    Article  ADS  Google Scholar 

  50. T. Krouglov, W.G. Bouwman, J. Plomp, M. T. Rekveldt, G.J. Vroege, A.V. Petukhov, D.M.E. Thies-Weesie, J. Appl. Cryst. 36, 1417 (2003)

    Article  Google Scholar 

  51. R.H. Tromp, W.G. Bouwman, Food Hydrocolloids 21, 154 (2007)

    Article  Google Scholar 

  52. S.V. Grigoriev, Y.O. Chetverikov, V.N. Zabenkin, W.H. Kraan, M.T. Rekveldt, N. van Dijk, J. Appl. Cryst. 40, s111 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. van Dijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Dijk, N.H. (2009). Structure Evolution in Materials Studied by Time-Dependent Neutron Scattering. In: Eckold, G., Schober, H., Nagler, S. (eds) Studying Kinetics with Neutrons. Springer Series in Solid-State Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03309-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03309-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03308-7

  • Online ISBN: 978-3-642-03309-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics