Skip to main content

Ultrafast Laser Processing of Glass Down to the Nano-Scale

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 130))

Summary

Ultrafast lasers can induce strong absorption in materials and even in transparent materials, due to nonlinear multiphoton absorption. By using this phenomenon, surface microstructuring and dicing of glass are successfully demonstrated. When the ultrafast laser is focused inside a transparent material with adequate pulse energies, absorption can be confined to a region near the focus point allowing for internal processing of the transparent material such as three-dimensional (3D) optical waveguide writing and fabrication of micro-optical components and microchannels buried inside the glass. Another important feature of ultrafast lasers is the suppression of heat diffusion to the surroundings of the processed area, which makes nanoscale fabrication possible. In addition, nonlinear multiphoton absorption can further improve the spatial resolution beyond that of the laser. In this chapter, the features of ultrafast laser processing are first described and clarified. Then, some relevant topics of glass processing including nanoscale fabrication are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Haight, D. Hayden, P. Longo, T.E. Neary, A. Wagner, J. Vac. Sci. Technol. B17, 3137 (1999)

    Google Scholar 

  2. C.H. Chen, X.B. Liu, in Proceedings of ICALEO 2005 (Laser Institute of America, Jacksonville, FL, 2005), M401

    Google Scholar 

  3. M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y.I. Jin, A. Ben-Yakar, Nature, 432, 822 (2004)

    Article  ADS  Google Scholar 

  4. N. Barsch, K. Korber, A. Ostendorf, K.H. Tonshoff, Appl. Phys. A 77, 237 (2003)

    ADS  Google Scholar 

  5. Y. Nakata, T. Okada, M. Maeda, Appl. Phys. Lett. 81, 4239 (2002)

    Article  ADS  Google Scholar 

  6. P. Rudolph, J. Bonse, J. Kruger, W. Kautek, Appl. Phys. A 69, 763 (1999)

    Article  ADS  Google Scholar 

  7. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  8. T. Gorelik, M. Will, S. Nolte, A. Tünnermann, U. Glatzel, Appl. Phys. A 76, 309 (2003)

    Article  ADS  Google Scholar 

  9. W. Watanabe, T. Asano, K. Yamada, K. Itoh, J. Nishii, Opt. Lett. 28, 2491 (2003)

    Article  ADS  Google Scholar 

  10. L. Sudrie, K.A. Winick, J. Lightwave Technol. 21, 246 (2003)

    Article  ADS  Google Scholar 

  11. E. Bricchi, J.D. Mills, P.G. Kazamsky, B.G. Klappauf, J.J. Baumberg, Opt. Lett. 27, 2200 (2002)

    Article  ADS  Google Scholar 

  12. G.D. Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, P. Laporta, Opt. Exp. 84, 3190 (2007)

    Article  Google Scholar 

  13. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, Opt. Lett. 26, 277 (2001)

    Article  ADS  Google Scholar 

  14. K. Sugioka, Y. Cheng, K. Midorikawa, Appl. Phys. A 81, 1 (2005)

    Article  ADS  Google Scholar 

  15. S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001)

    Article  ADS  Google Scholar 

  16. S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, B. Luther-Davies, Appl. Phys. Lett. 88, 201909 (2006)

    Article  ADS  Google Scholar 

  17. K. Ke, E.F. Hasselbrink, A.J. Hunt, Anal. Chem. 77, 5083 (2005)

    Article  Google Scholar 

  18. S.I. Anisimov, B. Rethfeld, Proc. SPIE 3093 (1997)

    Google Scholar 

  19. P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Phys. Rev. Lett. 61, 2886 (1988)

    Article  ADS  Google Scholar 

  20. M. Fujita, M. Hashida, Oyo Butsuri 73, 178 (2004) (in Japanese)

    Google Scholar 

  21. S. Maruo, H. Inoue, Appl. Phys. Lett. 89, 144101 (2006)

    Article  ADS  Google Scholar 

  22. S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, H. Misawa, Nanotechnology 16, 846 (2005)

    Article  ADS  Google Scholar 

  23. J.W. Chan, T.R. Huser, S. Risbun, D.M. Krol, Opt. Lett. 26, 1726 (2001)

    Article  ADS  Google Scholar 

  24. M. Will, S. Nolte, B.N. Chichkov, A. Tuennermann, Appl. Opt. 41, 4360 (2002)

    Article  ADS  Google Scholar 

  25. S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Appl. Phys. A 77, 109 (2003)

    Article  ADS  Google Scholar 

  26. K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, K. Itoh, Jpn. J. Appl. Phys. 42, 6916 (2003)

    Article  ADS  Google Scholar 

  27. K. Kawamura, M. Hirano, T. Kamiya, H. Hosono, Appl. Phys. Lett. 81, 1137 (2002)

    Article  ADS  Google Scholar 

  28. K. Yamada, W. Watanabe, Y. Li, K. Itoh, Opt. Lett. 29, 1846 (2004)

    Article  ADS  Google Scholar 

  29. K. Kawamura, M. Hirano, T. Kurobori, D. Takamizu, T. Kamiya, H. Hosono, Appl. Phys. Lett. 84, 311 (2004)

    Article  ADS  Google Scholar 

  30. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26, 277 (2001)

    Article  ADS  Google Scholar 

  31. Y. Hanada, K. Sugioka, H. Kawano, I.S. Ishikawa, A. Miyawaki, K. Midorikawa, Biomed. Microdevices 10, 403 (2008)

    Article  Google Scholar 

  32. R. Osellame, V. Maselli, R.M. Vazquez, R. Ramponi, G. Cerullo, Appl. Phys. Lett. 90, 231118 (2007)

    Article  ADS  Google Scholar 

  33. Z. Wang, K. Sugioka, K. Midorikawa, Appl. Phys. A 93, 225 (2008)

    Article  ADS  Google Scholar 

  34. K. Hirao, Oyo Butsuri 67, 950 (21998) (in Japanese)

    Google Scholar 

  35. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur, Opt. Lett. 21, 2023 (1996)

    Article  ADS  Google Scholar 

  36. H.B. Sun, Y. Xu, S. JuodKazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26, 325 (2001)

    Article  ADS  Google Scholar 

  37. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197–198, 891 (2002)

    Article  Google Scholar 

  38. Y. Shomotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sugioka, K. (2010). Ultrafast Laser Processing of Glass Down to the Nano-Scale. In: Miotello, A., Ossi, P. (eds) Laser-Surface Interactions for New Materials Production. Springer Series in Materials Science, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03307-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03307-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03306-3

  • Online ISBN: 978-3-642-03307-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics