Skip to main content

Practical Private Communication Systems

  • Chapter
Quantum Private Communication
  • 335 Accesses

Abstract

This chapter demonstrates the quantum private communication in practical communication systems. Four situations, including the fiber-based quantum private communication, free-space quantum private communication, quantum Internet networks, and applications of the quantum private communication in mobile communications, are described. Finally, problems and challenges for the practical quantum private communication are remarked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schneier B (1994) Applied cryptography: protocols, algorithms, and source code in C. Wiley, New York

    Google Scholar 

  2. Corndorf E, Barbosa G, Liang C, et al (2003) High-speed data encryption over 25 km of fiber by two-mode coherent-state quantum cryptography. Optics Letters, 28(21): 2040–2042

    Article  Google Scholar 

  3. Townsend P D (1997) Quantum cryptography on multi-user optical fibre networks. Nature, 385: 47–49

    Article  Google Scholar 

  4. Townsend P D (1998) Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems. IEEE Photonics Technology Letters, 10:(7) 1048–1050

    Article  Google Scholar 

  5. Stucki D, Gisin N, Guinnard O, et al (2002) Quantum key distribution over 67 km with a plug&play system. New Journal of Physics, 41(4):1–8

    Google Scholar 

  6. Gordon K J, Fernandez V, Townsend P D, et al (2004) A short wavelength gigahertz clocked fiber-optic quantum key distribution system. IEEE Journal of Quantum Electronics, 40: 900–908

    Article  Google Scholar 

  7. Gobby C, Yuan Z L, Shields A J (2004) Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters, 84: 3762–3764

    Article  Google Scholar 

  8. Tang X, Ma L, Mink A, et al (2006) Experimental study of high speed polarization-coding quantum key distribution with sifted-key rates over Mbit/s. Optics Express, 14: 2062–2070

    Article  Google Scholar 

  9. Fernandez V, Collins R J, Gordon K J, et al (2007) Passive Optical Network Approach to GigaHertz-Clocked Multiuser Quantum Key Distribution. IEEE Journal of Quantum Electronics, 43(2): 1–9

    Article  Google Scholar 

  10. Rarity J, Tapster P, Gorman P (2001) Secure free-space key exchange to 1.9 km and beyond. Journal of Modern Optics, 48: 1887

    Google Scholar 

  11. Rarity J G, Tapster P R, Gorman P M, et al (2002) Ground to satellite secure key exchange using quantum cryptography. New Journal of Physics, 4: 82

    Article  Google Scholar 

  12. Hughes R J, Nordholt J E, Derkacs D, et al (2002) Practical free-space quantum key distribution over 10 km in daylight and at night. New Journal of Physics, 4: 43

    Article  Google Scholar 

  13. Kurtsiefer C, Zarda P, Halder M, et al (2002) A step towards global key distribution. Nature, 419: 450

    Article  Google Scholar 

  14. Aspelmeyer M, Jennewein T, Pfennigbauer M, et al (2003) Long-distance quantum communication with entangled photons using satellites. IEEE Journal of Selection Topics on Quantum Electron, 9: 1541

    Article  Google Scholar 

  15. Aspelmeyer M, Böhm H R, Gyatso T, et al (2003) Long-distance free-space distribution of quantum entanglement. Science, 301: 621–623

    Article  Google Scholar 

  16. Resch K, Lindenthal M, Blauensteiner B, et al (2005) Distributing entanglement and single photons through an intra-city, free-space quantum channel. Optics Express, 13: 202–209

    Article  Google Scholar 

  17. Peng C Z, Yang T, Bao X, et al (2005) Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Physical Review Letters, 94: 150501

    Article  Google Scholar 

  18. Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al (2007) Free-space distribution of entanglement and single photons over 144 km. Nature Physcs, 3: 481–486

    Article  MATH  Google Scholar 

  19. Pfennigbauer M, Aspelmeyer M, Leeb W R, et al (2005) Satellite-based quantum communication terminal employing state-of-the-art technology. Journal of Optics Networking, 4: 549–560

    Article  Google Scholar 

  20. Elliott C (2002) Building the quantum network. New Journal of Physics, 4: 46.1–46.12

    Article  Google Scholar 

  21. Curcic T, Filipkowski M E, Chtchelkanova A, et.al (2004) Quantum networks: From quantum cryptography to quantum architecture. ACM SIG-COMM Computer Communication Review, 34(5): 3–8

    Article  Google Scholar 

  22. Rass S, Sfaxi M A, Hélie S G, et al (2008) Secure message relay over networks with QKD-Links. Second International Conference on Quantum, IEEE Nano and Micro Technologies, Sainte Luce, Martinique, 10–15 February, pp 10–15

    Google Scholar 

  23. SECOQC—Development of a global network for secure communication based on quantum cryptography. EU Sixth Framework Programme. <http://www>. secoqc.net/. Accessed 10 August 2009

  24. Marhoefer M, Wimberger I, Poppe A. Applicability of quantum cryptography for securing Mobile communication networks. <http://citeseerx.ist.psu.edu/>. Accessed 1 August 2009

  25. Bennett C H, Bessette F, Brassard G, et al (1992) Experimental quantum cryptography. Journal of Cryptology, 5: 3–28

    Article  MATH  Google Scholar 

  26. Idquantique. http://www.idquantique.com. Accessed 1 August 2009

  27. Takesue H, Nam S W, Zhang Q, et al (2007) Quantum key distribution over a 40-dB channel loss using superconducting single photon detectors. Nature Photonics, 1: 343–368

    Article  Google Scholar 

  28. Villoresi P, Jennewein T, Tamburini F, et al (2008) Experimental verification of the feasibility of a quantum channel between space and Earth. New Journal of Physics, 10: 1–12

    Article  Google Scholar 

  29. Shields A, Yuan Z (2007) Key to the quantum industry. Physics World, March: 24–29

    Google Scholar 

  30. MagiQ Company. http://www.magiqtech.com <http://www.magiqtech.com>. Accessed 1 August 2009

  31. SmartQuantum. <http://www.smartquantum.com/>. Accessed 1 August 2009

  32. Neumann E G (1988) Single-mode fibers. Springer, New York

    Google Scholar 

  33. Imoto N, Yoshizawa N, Sakai J, et al (1980) Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy. IEEE Journal of Quantum Electronics, 16(11): 1267–1271

    Article  Google Scholar 

  34. Foschini G J, Poole C D (1991) Statistical theory of polarization dispersion in single mode fibers. Journal of Lightwave Technology, 9(11): 1439–1456

    Article  Google Scholar 

  35. Gisin N (1995) Statistics of polarization dependent losses. Optics Communications, 114(5): 399–405

    Article  Google Scholar 

  36. Rothman L S, Rinsland C P, Goldman A, et al (1998) The HITRAN molecular spectroscopic database and HAWKS. Journal of Quantitative Spectroscopy & Radiative Transfer, 60: 665–710

    Article  Google Scholar 

  37. Fante R L (1975) Electromagnetic beam propagation in turbulent media. Proceedings of the IEEE, 63(12): 1669–1692

    Article  Google Scholar 

  38. Boroson D M (1993) Overview of lincoln laboratory development of lasercom technologies for space. Proceedings of SPIE, 1866: 30–39

    Article  Google Scholar 

  39. Corndorf E, Liang C, Kanter G S, et al (2004) Quantumnoise — protected data encryption for WDM fiberoptic networks. ACM SIGCOMM Computer Communications Review, 34(5): 21–30

    Article  Google Scholar 

  40. Acín A, Cirac J I, Lewenstein M (2007) Entanglement percolation in quantumnetworks. Nature Physics, 3: 256–259

    Article  Google Scholar 

  41. Kumavor P D, Beal A C, Yelin S (2005) et al. Comparison of Four Multi-User Quantum Key Distribution Schemes Over Passive Optical Networks. Journal of Lightwave Technology, 23(1): 268–276

    Article  Google Scholar 

  42. Nishioka T, Ishizuka H, Hasegawa T, et al (2002) “Circular type” quantum key distribution. IEEE Photonic Technology Letters, 14(4): 576–578

    Article  Google Scholar 

  43. Giovannetti V, Lloyd S, Maccone L (2001) Quantum-enhanced positioning and clock synchronization. Nature, 412(26): 417–419

    Article  Google Scholar 

  44. Strohbehn J W (1978) Laser beam propagation in the atmosphere. Spinger, Heidelberg, pp 45–106

    Google Scholar 

  45. Driscoll W G, Vaughan W (1978) Handbook of optics. McGraw-Hill, New York

    Google Scholar 

  46. Huang X, Sharma D (2009) An agent-oriented quantum key distribution for Wi-Fi network security. Lecture Notes in Computer Science (LNCS), Springer, Heidelberg, 5179: 227–235

    Google Scholar 

  47. Nguyen T M T, Sfaxi M A (2006) Ghernaouti-Hélie S. 802.11i Encryption key distribution using quantum cryptography. Journal of Networks, 1(5): 9–20

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Practical Private Communication Systems. In: Quantum Private Communication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03296-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03296-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03295-0

  • Online ISBN: 978-3-642-03296-7

Publish with us

Policies and ethics