Skip to main content

Solving All-to-All Communication with CA Agents More Effectively with Flags

  • Conference paper
Parallel Computing Technologies (PaCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5698))

Included in the following conference series:

Abstract

We have investigated the all-to-all communication problem for a multi-agent system modeled in cellular automata. The agents’ task is to solve the problem by communicating their initially mutually exclusive information to all the other agents. In order to evolve the best behavior of agents with a uniform rule we used a set of 20 initial configurations, 10 with border, 10 with cyclic wrap-around. The behavior was evolved by a genetic algorithm for agents with (1) simple moving abilities, (2) for agents with more sophisticated moving abilities and (3) for agents with indirect communication capabilities (reading and writing flags into the environmental cells). The results show that the more sophisticated agents are not only more effective but also more efficient regarding the effort that has to be made finding a feasible behavior with the genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior of several moving creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  3. Lin, J., Morse, A.S., Anderson, B.D.O.: The Multi-Agent Rendezvous Problem. An Extended Summary. In: Nehmer, J. (ed.) Experiences with Distributed Systems. LNCS, vol. 309, pp. 257–289. Springer, Heidelberg (1988)

    Google Scholar 

  4. Principe, G., Santoro, N.: Distributed Algorithms for Autonomous Mobile Robots. In: 4th IFIP International Conference on TCS. IFIP, vol. 209, pp. 47–62. Springer, Heidelberg (2006)

    Google Scholar 

  5. Ediger, P., Hoffmann, R.: Optimizing the creature’s rule for all-to-all communication. In: EPSRC Workshop Automata 2008. Theory and Applications of Cellular Automata, Bristol, UK, June 12-14, pp. 398–410 (2008)

    Google Scholar 

  6. Hoffmann, R., Ediger, P.: Evolving multi-creature systems for all-to-all communication. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 550–554. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Sipper, M.: Evolution of Parallel Cellular Machines. LNCS, vol. 1194. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  8. Sipper, M., Tomassini, M.: Computation in artificially evolved, non-uniform cellular automata. Theor. Comput. Sci. 217(1), 81–98 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Komann, M., Mainka, A., Fey, D.: Comparison of evolving uniform, non-uniform cellular automaton, and genetic programming for centroid detection with hardware agents. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 432–441. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Dijkstra, J., Jessurun, J., Timmermans, H.J.P.: A multi-agent cellular automata model of pedestrian movement. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 173–181. Springer, Heidelberg (2001)

    Google Scholar 

  11. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. de Physique 2, 2221 (1992)

    Article  Google Scholar 

  12. Mesot, B., Sanchez, E., Peña, C.A., Perez-Uribe, A.: SOS++: Finding smart behaviors using learning and evolution. In: Standish, R., Bedau, M., Abbass, H. (eds.) Artificial Life VIII: The 8th International Conference on Artificial Life, pp. 264–273. MIT Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ediger, P., Hoffmann, R. (2009). Solving All-to-All Communication with CA Agents More Effectively with Flags. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2009. Lecture Notes in Computer Science, vol 5698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03275-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03275-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03274-5

  • Online ISBN: 978-3-642-03275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics