Local Quantitative LTL Model Checking

  • Jiří Barnat
  • Luboš Brim
  • Ivana Černá
  • Milan Češka
  • Jana Tůmová
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5596)


Quantitative analysis of probabilistic systems has been studied mainly from the global model checking point of view. In the global model-checking, the goal of verification is to decide the probability of satisfaction of a given property for all reachable states in the state space of the system under investigation. On the other hand, in local model checking approach the probability of satisfaction is computed only for the set of initial states. In theory, it is possible to solve the local model checking problem using the global model checking approach. However, the global model checking procedure can be significantly outperformed by a dedicated local model checking one. In this paper we present several particular local model checking techniques that if applied to global model checking procedure reduce the runtime needed from days to minutes.


Model Check Linear Programming Problem Maximal Probability Linear Temporal Logic Strongly Connect Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous-time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal of Algorithms 15(1), 441–460 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baier, C.: On the Algorithmic Verification of Probabilistic Systems. Habilitation Thesis, Universität Mannheim (1998)Google Scholar
  4. 4.
    Baier, C., Größer, M., Ciesinski, F.: Partial Order Reduction for Probabilistic Systems. In: 1st International Conference on Quantitative Evaluation of Systems (QEST 2004), pp. 230–239. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  5. 5.
    Barnat, J., Brim, L., Černá, I., Češka, M., Tůmová, J.: ProbDiVinE-MC: Multi-Core LTL Model Checker for Probabilistic Systems. In: Proceedings of QEST 2008, Tool Paper. IEEE, Los Alamitos (2008) (to appear), Google Scholar
  6. 6.
    Barnat, J., Chaloupka, J., van de Pol, J.: Improved Distributed Algorithms for SCC Decomposition. Electron. Notes Theor. Comput. Sci. 198(1), 63–77 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Jeannet, B., de Argenio, P., Larsen, K.G.: RAPTURE: A tool for verifying Markov Decision Processes. In: Proc. Tools Day / CONCUR 2002. Tech. Rep. FIMU-RS-2002-05. MU Brno, pp. 84–98 (2002)Google Scholar
  9. 9.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1, 65–75 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ciesinski, F., Baier, C.: LiQuor: A tool for Qualitative and Quantitative Linear Time analysis of Reactive Systems. In: Proc. of QEST 2006, pp. 131–132. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  11. 11.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    de Alfaro, L.: Formal Verification of Stochastic Systems. PhD thesis, Stanford University, Department of Computer Science (1997)Google Scholar
  13. 13.
    Derman, C.: Finite State Markovian Decision Processes. Academic Press, Inc., Orlando (1970)zbMATHGoogle Scholar
  14. 14.
    Doob, J.L.: Measure theory. Springer, Heidelberg (1994)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hansson, H., Jonsson, B.: A Framework for Reasoning about Time and Reliability. In: IEEE Real-Time Systems Symposium, pp. 102–111 (1989)Google Scholar
  16. 16.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizating mutual exclusion. In: Proc. ACM Symposium on Principles of Distributed Computing, pp. 119–131 (1990)Google Scholar
  18. 18.
    Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Computation 88(1) (1990)Google Scholar
  19. 19.
    Lehmann, D., Rabin, M.: On the advantage of free choice: A symmetric and fully distributed solution to the dining philosophers problem (extended abstract). In: Proc. 8th Annual ACM Symposium on Principles of Programming Languages (POPL 1981), pp. 133–138 (1981)Google Scholar
  20. 20.
    ProbDiVinE homepage (2008),
  21. 21.
    Puterman, M.L.: Markov Decision Processes-Discrete Stochastic Dynamic Programming. John Wiley &Sons, New York (1994)zbMATHGoogle Scholar
  22. 22.
    Vardi, M.Y.: Probabilistic linear-time model checking: an overview of the automata-theoretic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computation paths. In: Proceedings of 24th IEEE Symposium on Foundation of Computer Science, Tuscan, pp. 185–194 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jiří Barnat
    • 1
  • Luboš Brim
    • 1
  • Ivana Černá
    • 1
  • Milan Češka
    • 1
  • Jana Tůmová
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations