Proving the Correctness of the Implementation of a Control-Command Algorithm

  • Olivier Bouissou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5673)


In this article, we study the interactions between a control-command program and its physical environment via sensors and actuators. We are interested in finding invariants on the continuous trajectories of the physical values that the program is supposed to control. The invariants we are looking for are periodic sequences of intervals that are abstractions of the values read by the program. To compute them, we first build octrees that abstract the impact of the program on its environment. Then, we compute a period of the abstract periodic sequence and we finally define the values of this sequence as the fixpoint of a monotone map. We present a prototype analyzer that computes such invariants for C programs using a simple specification language for describing the continuous environment. It shows good results on classical benchmarks for hybrid systems verification.


Hybrid System Boolean Function Continuous Mode Terminal Node Complete Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003, pp. 196–207. ACM, New York (2003)Google Scholar
  2. 2.
    Bouissou, O., Martel, M.: GRKLib: a guaranteed runge-kutta library. In: Follow-up of International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics. IEEE Press, Los Alamitos (2007)Google Scholar
  3. 3.
    Bouissou, O., Martel, M.: Abstract interpretation of the physical inputs of embedded programs. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 37–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bouissou, O., Martel, M.: A hybrid denotational semantics of hybrid systems. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 63–77. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Gansner, E., Koutsofios, E.: A C++ data model supporting reachability analysis and dead code detection. In: Jazayeri, M. (ed.) ESEC 1997 and ESEC-FSE 1997. LNCS, vol. 1301, pp. 414–431. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.: Proving that programs eventually do something good. SIGPLAN Notices 42(1), 265–276 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI 2006, pp. 415–426. ACM, New York (2006)Google Scholar
  8. 8.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977, pp. 238–252. ACM Press, New York (1977)Google Scholar
  9. 9.
    Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and Computation 2(4), 511–547 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    de Oliveira, I.R., Cugnasca, P.S.: Checking safe trajectories of aircraft using hybrid automata. In: SAFECOMPK 2002, pp. 224–235. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling, H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real-life processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 469–485. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Le Guernic, C., Girard, A.: Zonotope-hyperplane intersection for hybrid systems reachability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 215–228. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Gupta, A., Henzinger, T., Majumdar, R., Rybalchenko, A., Xu, R.: Proving non-termination. In: POPL 2008, pp. 147–158. ACM Press, New York (2008)Google Scholar
  17. 17.
    Henzinger, T.A.: The theory of hybrid automata. In: Symposium on Logic in Computer Science, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  18. 18.
    Henzinger, T.A., Rusu, V.: Reachability verification for hybrid automata. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 190–204. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Hespanha, J.: Uniform stability of switched linear systems: Extensions of LaSalle’s invariance principle. IEEETAC 49(4), 470–482 (2004)MathSciNetGoogle Scholar
  20. 20.
    Hymans, C., Levillain, O.: Newspeak, Doubleplussimple Minilang for Goodthinkful Static Analysis of C. Technical Note 2008-IW-SE-00010-1, EADS IW/SE (2008)Google Scholar
  21. 21.
    Kowalewski, S., Stursberg, O., Fritz, M., Graf, H., Hoffmann, I., Preußig, J., et al.: A case study in tool-aided analysis of discretely controlled continuous systems: the two tanks problem. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) HS 1997. LNCS, vol. 1567, p. 163. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Ben Makhlouf, I., Kowalewski, S.: An evaluation of two recent reachability analysis tools for hybrid systems. In: Second IFAC Conference on Analysis and Design of Hybrid Systems, pp. 377–382. Elsevier, Amsterdam (2006)Google Scholar
  24. 24.
    Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation 105(1), 21–68 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Putot, S., Goubault, E., Martel, M.: Static analysis-based validation of floating-point computations. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 306–313. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Ramdani, N., Meslem, N., Candau, Y.: Reachability of uncertain nonlinear systems using a nonlinear hybridization. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 415–428. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static analysis in disjunctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 3–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Wongpiromsarn, T., Mitra, S., Murray, R.M., Lamperski, A.G.: Periodically controlled hybrid systems. In: HSCC 2009. LNCS, vol. 5469, pp. 396–410. Springer, Heidelberg (2009)Google Scholar
  29. 29.
    Yfoulis, C., Shorten, R.: A numerical technique for stability analysis of linear switched systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 631–645. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olivier Bouissou
    • 1
  1. 1.CEA LIST, Laboratory of Modelling and Analysis of Systems in InteractionFrance

Personalised recommendations