The Causal Graph Revisited for Directed Model Checking

  • Martin Wehrle
  • Malte Helmert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5673)


Directed model checking is a well-established technique to tackle the state explosion problem when the aim is to find error states in large systems. In this approach, the state space traversal is guided through a function that estimates the distance to nearest error states. States with lower estimates are preferably expanded during the search. Obviously, the challenge is to develop distance functions that are efficiently computable on the one hand and as informative as possible on the other hand. In this paper, we introduce the causal graph structure to the context of directed model checking. Based on causal graph analysis, we first adapt a distance estimation function from AI planning to directed model checking. Furthermore, we investigate an abstraction that is guaranteed to preserve error states. The experimental evaluation shows the practical potential of these techniques.


Model Check Setup Cost Mutual Exclusion Parallel Composition Causal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brafman, R.I., Domshlak, C.: Structure and complexity in planning with unary operators. Journal of Artificial Intelligence Research 18, 315–349 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (2000)Google Scholar
  3. 3.
    Dierks, H.: Comparing model-checking and logical reasoning for real-time systems. Formal Aspects of Computing 16(2), 104–120 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving abstractions. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 19–34. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the validation of communication protocols. International Journal on Software Tools for Technology Transfer 5(2), 247–267 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with HSF-SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Helmert, M.: A planning heuristic based on causal graph analysis. In: Zilberstein, S., Koehler, J., Koenig, S. (eds.) Proceedings of the 14th International Conference on Automated Planning and Scheduling (ICAPS 2004), pp. 161–170. AAAI Press, Menlo Park (2004)Google Scholar
  8. 8.
    Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Research 26, 191–246 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Helmert, M., Geffner, H.: Unifying the causal graph and additive heuristics. In: Rintanen, J., Nebel, B., Beck, J.C., Hansen, E. (eds.) Proceedings of the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008). AAAI Press, Menlo Park (2008)Google Scholar
  10. 10.
    Hoffmann, J., Smaus, J.-G., Rybalchenko, A., Kupferschmid, S., Podelski, A.: Using predicate abstraction to generate heuristic functions in Uppaal. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS, vol. 4428, pp. 51–66. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science (FOCS 1977), pp. 254–266. IEEE Computer Society, Los Alamitos (1977)CrossRefGoogle Scholar
  12. 12.
    Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Baer, A.: The UniForM workbench, a universal development environment for formal methods. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 35–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian doll abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 203–217. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than Uppaal? In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 552–555. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer Systems 5(1), 1–11 (1987)CrossRefGoogle Scholar
  17. 17.
    Pearl, J.: Heuristics: Intelligent search strategies for computer problem solving. Addison-Wesley, Reading (1984)Google Scholar
  18. 18.
    Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Seitz, C.L.: Ideas about arbiters. Lambda 1, 10–14 (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Wehrle
    • 1
  • Malte Helmert
    • 1
  1. 1.University of FreiburgGermany

Personalised recommendations