Skip to main content

Laser scanning - a paradigm change in topographic data acquisition for natural hazard management

  • Chapter
  • First Online:
Sustainable Natural Hazard Management in Alpine Environments

Abstract

Within the thematic area of Databases and Modelling a certain focus is placed on the effective acquisition and management of geo-data and the derivation of standardized products from this data, e.g. as input parameters in process simulation models. In most cases, in-situ data collection (e.g. run-off measurements) is state-of-the-art. As there is a growing demand for area-wide data collection, the utilization of remote sensing technology will gain ground in the future. Within alpS the project ‘Determination of surface properties from laser scanning data’ addresses these demands by incorporating certain aspects of remote sensing in natural hazard management. Remote sensing is the contactless collection of information about an object or process. This is done with electromagnetic waves and imaging methods. Remote sensing can be carried out from the earth’s surface or from airborne and spaceborne platforms. For earth observation issues passive sensors are widely applied, which record the reflected radiation of natural energy sources (with the sun as the most important one). For many applications the method of choice is still aerial photography. Active sensors are more flexible as they have their own energy source. Laser scanning is such an active method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abellán A, Vilaplana JM, Martínez J (2006) Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Engineering Geology 88 (3-4), pp 136-148

    Article  Google Scholar 

  • Asselman N, Middelkoop H, Ritzen M, Straatsma M (2002) Assessment of the hydraulic roughness of river flood plains using laser altimetry. IAHS publication 276, pp 381-388

    Google Scholar 

  • Baltsavias EP (1999a) A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 54 (2-3), pp 83-94

    Article  Google Scholar 

  • Baltsavias EP (1999b) Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing 54 (2-3), pp 199-214

    Article  Google Scholar 

  • Baltsavias EP (1999c) Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal of Photogrammetry and Remote Sensing 54 (2-3), pp 164-198

    Article  Google Scholar 

  • Bartelme N (2005) Geoinformatik - Modelle, Strukturen, Funktionen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bartunov O, Sigaev T (2006) GiST for PostgreSQL, http://www.sai.msu.su/_megera/postgres/gist/, last accessed 1. December 2006

  • Benz U, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing 58 (3-4), pp 239-258

    Article  Google Scholar 

  • Boulanger A (2005) Open-source versus proprietary software: Is one more reliable and secure than the other?, IBM Systems Journal 44 (2), pp 239-248

    Google Scholar 

  • Brenner C (2005) Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation 6 (3-4), pp 187-198

    Article  Google Scholar 

  • Briese C (2004) Three-dimensional modelling of breaklines from airborne laser scanner data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35 (B3), pp 1097-1102

    Google Scholar 

  • Briese C, Attwenger M (2005) Modellierung dreidimensionaler hydrologisch und hydraulisch relevanter Geländekanten aus hochauflösenden Laser-Scanner- Daten. In: Bundesanstalt für Gewässerkunde (ed): Praxisorientierte und vielseitig nutzbare Fernerkundungseinsätze an der Elbe, pp 35-45

    Google Scholar 

  • Brügelmann R, Bollweg A (2004) Laser altimetry for river management. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35 (B2), pp 234-239

    Google Scholar 

  • Bucher K, Geist T, Stötter J (2006) Ableitung der horizontalen Gletscherbewegung aus multitemporalen Laserscanning-Daten Fallbeispiel: Hintereisferner/ Ötztaler Alpen. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2006 - Beiträge zum 18. AGIT-Symposium Salzburg, pp 277-286

    Google Scholar 

  • Cain DJM (2006) PyGreSQL PostgreSQL module for Python, http://www.pygresql.org, last accessed 1. December 2006

  • Charlton M, Large A, Fuller I (2003) Application of airborne LiDAR in river environments: the River Coquet, Northumberland, UK. Earth surface processes and landforms 28 (3), pp 299-306

    Article  Google Scholar 

  • Coren F, Sterzai P (2006) Radiometric correction in laser scanning. International Journal of Remote Sensing 27 (15-16), pp 3097-3104

    Article  Google Scholar 

  • Cobby D, Mason D, Horrit M, Bates P (2003) Two-dimensional hydraulic flood modelling using a finite-element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry. Hydrological Processes 17, pp 1979-2000

    Article  Google Scholar 

  • Deems JS, Fassnacht SR, Elder KJ (2006) Fractal distribution of snow depth from LiDAR data. Journal of Hydrometeorology 7 (2), pp 285-297

    Article  Google Scholar 

  • Dorren L, Berger F, Maier B (2005): Der Schutzwald als Steinschlagnetz. LWFaktuell 50, pp 25-27

    Google Scholar 

  • French J (2003) Airborne LiDAR in support of geomorphological and hydraulic modelling. Earth surface processes and landforms 28 (3), pp 321-335

    Article  Google Scholar 

  • Filin S, Pfeifer N (2006) Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing 60 (2), pp 71-80

    Article  Google Scholar 

  • Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SD (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73, pp 131-148

    Article  Google Scholar 

  • Geist T, Lutz E, Stötter J (2003) Airborne Laser Scanning Technology and its Potential for Applications in Glaciology. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science 34 (3/W13), pp 101-106

    Google Scholar 

  • Geist T, Stötter J (2007) Documentation of glacier surface elevation change with multi-temporal airborne laser scanner data - case study: Hintereisferner and Kesselwandferner, Tyrol, Austria. Zeitschrift für Gletscherkunde und Glazialgeologie 41, pp 77-106

    Google Scholar 

  • GRASS Development Team (2007) Geographic Resources Analysis Support System (GRASS) Software. ITC-irst, Trento, Italy. http://grass.itc.it, last accessed 1. May 2007

  • Grenzdörffer G, Foy T, Bill R (2002) Laserscanning und andere Methoden zur Ausweisung potenziell gefährdeter Hochwasserbereiche der Unteren Warnow. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2002 - Beiträge zum 14. AGIT-Symposium Salzburg, pp 133-138

    Google Scholar 

  • Hay GJ, Blaschke T, Marceau DJ, Bouchard A (2003) A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and Remote Sensing 57 (5-6), pp 327-345

    Article  Google Scholar 

  • Höfle B, Rutzinger M, Geist T, Stötter J (2006) Using airborne laser scanning data in urban data management - set up of a flexible information system with open source components. In: Fendel E, Rumor M (eds) Proceedings of UDMS 2006: 25th Urban Data Management Symposium, Aalborg, Denmark: 7.11-7.23

    Google Scholar 

  • Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing, in press

    Google Scholar 

  • Hollaus M, Wagner W, Kraus K (2005) Airborne laser scanning and usefulness for hydrological models. Advances in Geosciences 5, pp 57-63

    Google Scholar 

  • Horn BKP (1981) Hill Shading and the reflectance map, Proceedings of the IEEE 69 (1), pp 14-47

    Article  Google Scholar 

  • Huggel C (2004) Assessment of glacial hazards based on remote sensing and GIS modelling. Schriftenreihe Physische Geographie, Glaziologie und Geomorphodynamik 44, Zürich

    Google Scholar 

  • Hyyppä J, Hyyppä H, Litkey P, Yu X, Haggrén H, Rönnholm P, Pyysalo U, Pitkänen J, Maltamo M (2004) Algorithms and methods of airborne laserscanning for forest measurements. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (8/W2), pp 82-88

    Google Scholar 

  • Janeras M, Navarro M, Arnó G, Ruiz A, Kornus W, Talaya J, Barberá M, López F (2004) Lidar applications to rock fall hazard assessment in vall de núria. Proceedings of the 4th ICA Mountain Cartography Workshop, pp 1-13

    Google Scholar 

  • Jelalian AV, (1992) Laser Radar Systems. Artech House, Boston London.

    Google Scholar 

  • Jones E, Oliphant T, Peterson P et al. (2001) SciPy: Open Source Scientific Tools for Python, http://www.scipy.org, last accessed 1. December 2006

  • Karel W, Pfeifer N, Briese C (2006) DTM quality assessment. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (2), pp 7-12

    Google Scholar 

  • Kaartinen H, Hyyppä J, Gülch E, Vosselman G, Hyyppä H, Matikainen L, Hofmann AD, Mäder U, Persson Å, Söderman U, Elmqvist M, Ruiz A, Dragoja M, Flamanc D, Maillet G, Kersten T, Carl J, Hau R, Wild E, Frederiksen L, Holmgaard J, Vester K (2005) Accuracy of 3D city models: EuroSDR comparison. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (3/W19), pp 227-232

    Google Scholar 

  • Kääb A, Huggel C, Fischer L, Guex S, Paul F, Roer I, Salzmann N, Schlaefli S, Schmutz K, Schneider D, Strozzi T, Weidemann Y (2005a) Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview. Natural Hazards and Earth System Sciences 5, pp 527-554

    Article  Google Scholar 

  • Kääb A, Reynolds J, Haeberli W (2005b) Glacier and permafrost hazards in high mountains. In: Huber U, Bugmann H, Reasoner M (eds) Global change and mountain regions. Advances in global change research, pp 225-234

    Google Scholar 

  • Kraus K (2000) Photogrammetrie, Band 3, Topographische Informationssysteme. Dümmler

    Google Scholar 

  • Kraus K (2004) Photogrammetrie, Band 1, Geometrische Informationen aus Photographien und Laserscanneraufnahmen, De Gruyter Verlag, Berlin

    Google Scholar 

  • Kraus K, Briese C, Attwenger M, Pfeifer N (2004) Quality measures for digital terrain models. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35 (B2), pp 113-118

    Google Scholar 

  • LAS Specification (2005): ASPRS LIDAR Data Exchange Format Standard Version 1.1, http://www.lasformat.org, last accessed 1. December 2006

  • Luethy J, Stengele R (2005) 3D mapping of Switzerland challenges and experiences. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science 36 (3/W19), pp 42-47

    Google Scholar 

  • Lutz E, Geist T, Stötter J (2003) Investigations of airborne laser scanning signal intensity on glacial surfaces - Utilizing comprehensive laser geometry modelling and orthophoto surface modeling (A case study: Svartisheibreen, Norway). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34 (3/W13), pp 143-148

    Google Scholar 

  • Maas HG, Vosselman G (1999) Two algorithms for extracting building models from raw laser altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing 54 (2-3), pp 153-163

    Article  Google Scholar 

  • Maier B, Tiede D, Dorren L (2006) Assessing mountain forest structure using airborne laser scanning and landscape metrics. In: Lang S, Blaschke T, Schöpfer E (eds) 1st International Conference on Object-based Image Analysis (OBIA 2006), ISPRS XXXVI-4/C42, Salzburg

    Google Scholar 

  • Mason D, Anderson G, Bradbury R, Cobby D, Davenport I, Vandepoll M, Wilson J (2003) Measurement of habitat predictor variables for organism-habitat models using remote sensing and image segmentation. International Journal of Remote Sensing 24 (12), pp 2515-2532

    Article  Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57, pp 331-351

    Article  Google Scholar 

  • Mitas L, Mitasova H (2005) Spatial Interpolation. In: Longley P, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical Information Systems: Principles, Techniques, Management and Applications, second edition, Wiley, New Jersey

    Google Scholar 

  • Morsdorf F, Meier E, Allgöwer B, Nüesch D (2003) Clustering in airborne laser scanning raw data for segmentation of single trees. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34 (3/W13), pp 27-33

    Google Scholar 

  • Neteler M, Mitasova H (2004) Open Source GIS: A GRASS GIS Approach. 2nd Edition. Kluwer Academic Publishers, Boston, Dordrecht

    Google Scholar 

  • OGC Inc. - Open Geospatial Consortium Inc. (1999) OpenGIS Simple Features Specification for SQL, Revision 1.1, http://portal.opengeospatial.org/files/?artifactid=829, last accessed 1. December 2006

  • OSI - Open Source Initiative (2006) The Open Source Definition, http://www.opensource.org, last accessed 1. December 2006

  • Persson Å, Söderman U, Töpel J, Ahlberg S (2005) Visualization and analysis of full-waveform airborne laser scanner data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (3/W19), pp 103-108

    Google Scholar 

  • Refractions Research Inc.(2006) PostGIS: Geographic Objects for PostgreSQL, PostGIS Manual, http://postgis.refractions.net/docs/, last accessed 1. December 2006

  • PostgreSQL Global Development Group (2006) PostgreSQL 8.1 Documentation, http://www.postgresql.org/docs/manuals/, last accessed 1. December 2006

  • Python Software Foundation (2006) Python programming language, http://www.python.org, last accessed 1. December 2006

  • Rees WG (2001): Physical Principles of Remote Sensing (Second Edition), Cambridge University Press, Cambridge

    Google Scholar 

  • Rutzinger M, Höfle B, Geist Th, Stötter J (2006a) Object-based building detection based on airborne laser scanning data within GRASS GIS environment. In: Fendel E, Rumor M (eds) Proceedings of UDMS 2006: 25th Urban Data Management Symposium, Aalborg, Denmark: 7.37-7.48

    Google Scholar 

  • Rutzinger M, Höfle B, Pfeifer N, Geist Th, Stötter J (2006b) Object-based analysis of airborne laser scanning data for natural hazard purposes using open source components. In: Lang S, Blaschke T, Schöpfer E (eds) 1st International Conference on Object-based Image Analysis (OBIA 2006), ISPRS XXXVI-4/C42, Salzburg

    Google Scholar 

  • Scheikl M, Grafinger M, Poscher G (2001) Entwicklung und Einsatz eines automatischen Fernüberwachungssystems basierend auf einem Laserscanner (ALARM). In: Chesi G, Weinold T (eds) Internationale Geodätische Woche Obergurgl 2001, pp 205-214

    Google Scholar 

  • Schmidt R, Heller A, Sailer R (2005) Vergleich von Laserscanning mit herkömmlichen Höhendaten in der dynamische Lawinensimulation mit SAMOS. In: Chesi G, Weinold T (eds) Internationale Geodätische Woche Obergurgl 2005, pp 131-140

    Google Scholar 

  • Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 59 (1-2), pp 85-101

    Article  Google Scholar 

  • Sithole G, Vosselman G (2006) Bridge detection in airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 61 (1), pp 33-46

    Article  Google Scholar 

  • Smith L, Sheng Y, Magilligan F, Smith N, Gomez B, Mertes L, Krabill W, Garvin J (2006) Geomorphic impact and rapid subsequent recovery from the 1996 Skeikarársandur jökulhlaup, Iceland, measured with multi-year airborne lidar. Geomorphology 75, pp 65-75

    Google Scholar 

  • Smith M, Asal FFF, Priestnall G (2004) The use of photogrammetry and Li- DAR for landscape roughness estimation in hydrodynamic studies. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35 (B3), pp 714-719

    Google Scholar 

  • Song JH, Han SH, Yu K, Kim, YI (2002) Assessing the possibility of land-cover classification using lidar intensity data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34 (3B), pp 259-262

    Google Scholar 

  • Staley DM, Wasklewicz TA, Blaszczynski JS (2006) Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology 74, pp 152-163

    Article  Google Scholar 

  • Stötter J, Zischg A (in print) Alpines Risikomanagement. In: Felgentreff C, Glade T (eds): Naturrisiken und Sozialkatastrophen

    Google Scholar 

  • Stötter J, Weck-Hannemann H, Veulliet E (this volume) Global change - natural hazards: new challenges, new strategies

    Google Scholar 

  • Tamiru Haile A, Rientjes T (2005) Effects of LiDAR DEM resolution in flood modelling: a model sensitivity study for the city of Tegucigalpa, Honduras. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (3/W19), pp 168-173

    Google Scholar 

  • Thoma D, Gupta S, Bauer M, Kirchoff C (2005) Airborne laser scanning for riverbank erosion assessment. Remote Sensing of Environment 95 (4), pp 493-501

    Article  Google Scholar 

  • Tsakiri M, Lichti D, Pfeifer N (2006) Terrestrial laser scanning for deformation monitoring. Proceedings of 12th FIG symposium on deformation measurement and 3rd IAG symposium on geodesy for geotechnical and structural engineering, Baden, Austria

    Google Scholar 

  • UMN MapServer (2006) UMN MapServer Homepage, University of Minnesota, http://mapserver.gis.umn.edu/, last accessed 1. December 2006

  • VTK (2006) The Visualization Toolkit Homepage, http://www.vtk.org, last accessed 1. December 2006

  • Wack R, Stelzl H (2005) Laser DTM generation for South Tyrol and 3D visualisation. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science 36 (3/W19), pp 48-53

    Google Scholar 

  • Wagner W, Ullrich A, Melzer T, Briese C, Kraus K (2004) From single-pulse to full-waveform airborne laser scanners: potential and practical challenges. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35 (B3), pp 201-206

    Google Scholar 

  • Warmerdam F (2006): GDAL - Geospatial Data Abstraction Library. http://www.gdal.org, last accessed 1. December 2006

  • Wood JD (1996) The geomorphological characterisation of digital elevation models, PhD Thesis at University of Leicester, UK, http://www.soi.city.ac.uk/_jwo/phd, last accessed 1. December 2006

  • Würländer R, Rieger W, Drexel P, Briese C (2005) Landesweite Datenerhebung mit ALS technologische Herausforderungen und vielseitige GIS-Anwendungen. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geoinformatik 2005 - Beiträge zum 17. AGIT-Symposium Salzburg, pp 800-80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geist, T., Höfle, B., Rutzinger, M., Pfeifer, N., Stötter, J. (2009). Laser scanning - a paradigm change in topographic data acquisition for natural hazard management. In: Veulliet, E., Johann, S., Weck-Hannemann, H. (eds) Sustainable Natural Hazard Management in Alpine Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03229-5_11

Download citation

Publish with us

Policies and ethics