MHC: Peptide Analysis: Implications on the Immunogenicity of Hantaviruses’ N protein

  • Maurício Menegatti Rigo
  • Dinler Amaral Antunes
  • Gustavo Fioravanti Vieira
  • José Artur Bogo Chies
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5676)

Abstract

Hantaviruses, members of the Bunyaviridae family, are enveloped negative-stranded RNA viruses with tripartite genomes – S, M and L. The S genome codes for a nucleocapsid (N) protein, which is quite conserved among different species of the hantavirus genus and possess a recognized immunogenicity. In this work we analyzed the sequence of two regions in this protein (N94 − 101 and N180 − 188), which presents T cell epitopes for two species of hantaviruses – Sin Nombre and Puumala. Interestingly, the same region has no described epitopes for Hantaan virus, despite its similarity. A study using a bioinformatic approach for the construction of MHC:peptide complexes was performed to detect any variation on the cleft region that could explain such degrees of immunogenicity. Our results shown topological and charges differences among the constructed complexes.

Keywords

MHC-I epitopes Hantavirus molecular docking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tischler, N.D., Rosemblatt, M., Valenzuela, P.D.T.: Characterization of Cross-reactive and Serotype-specific Epitopes on the Nucleocapsid Proteins of Hantaviruses. Virus Res. 135, 1–9 (2008)CrossRefPubMedGoogle Scholar
  2. 2.
    Maeda, K., West, K., Toyosaki-Maeda, T., Rothman, A.L.: Identification and Analysis for Cross-reactivity Among Hantaviruses of H-2b-restricted Cytotoxic T-lymphocyte Epitopes in Sin Nombre Virus Nucleocapsid Protein. J. Gen. Virol. 85, 1909–1919 (2004)CrossRefPubMedGoogle Scholar
  3. 3.
    Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-PdbViewer: an Environment for Ccomparative Protein Modeling. Electrophoresis 18, 2714–2723 (1997)CrossRefPubMedGoogle Scholar
  4. 4.
    Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.: GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 26, 1701–1718 (2005)CrossRefGoogle Scholar
  5. 5.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 19, 1639–1662 (1998)CrossRefGoogle Scholar
  6. 6.
    Petrey, D., Honig, B.: GRASP2: Visualization, Surface Properties, and Electrosttics of Macromolecular Structures and Sequences. Meth. Enzymol. 374, 492–509 (2003)CrossRefPubMedGoogle Scholar
  7. 7.
    Rammensee, H., Bachmann, J., Emmerich, N.N., Bachor, O.A., Stevanovic, S.: SYFPEITHI: Database for MHC Ligands and Peptide motifs. Immunogenetics 50, 213–219 (1999)CrossRefPubMedGoogle Scholar
  8. 8.
    Kessels, H.W., de Visser, K.E., Tirion, F.H., Coccoris, M., Kruisbeek, A.M., Schumacher, T.N.: The Impact of Self-tolerance on the Polyclonal CD8+ T-cell Repertoire. J. Immunol. 172, 2324–2331 (2004)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maurício Menegatti Rigo
    • 1
  • Dinler Amaral Antunes
    • 1
  • Gustavo Fioravanti Vieira
    • 1
  • José Artur Bogo Chies
    • 1
  1. 1.Department of Genetics, UFRGSNúcleo de BioinformáticaPorto AlegreBrazil

Personalised recommendations