Skip to main content

High-Level Hierarchical Semantic Processing Framework for Smart Sensor Networks

  • Chapter
Human-Computer Systems Interaction

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 60))

  • 886 Accesses

Abstract

Sensor networks play an increasing role in domains like security surveillance or environmental monitoring. One challenge in such systems is proper adaptation to and interpretation of events in the sensing area of an individual node; another challenge is the integration of observations from individual nodes into a common semantic representation of the environment. We describe a novel hierarchical architecture framework called SENSE (smart embedded network of sensing entities) to meet these challenges. Combining multi-modal sensor information from audio and video modalities to gain relevant information about the sensed environment, each node recognizes a set of predefined behaviors and learns about usual behavior. Neighbor nodes exchange such information to confirm unusual observations and establish a global view. Deviations from “normality” are repor ted in a way understandable for human operators without special training.

This work is partially funded by the European Commission under contract No. 033279 within the Sixth Framework Program for Research and Technological Development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. www.sense-ist.org (SENSE project website) (accessed April 1, 2009)

  2. Khan, Z., Balch, T., Dellaert, F.: An MCMC-based particle filter for tracking multiple interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 1960–1972 (2006)

    Article  Google Scholar 

  3. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press Inc., New York (1995)

    Google Scholar 

  4. Zucker (né Pratl), G., Frangu, L.: Smart nodes for semantic analysis of visual and aural data. In: Proc. IEEE Conference INDIN, pp. 1001–1006 (2007)

    Google Scholar 

  5. Sallans, B., Bruckner, D., Russ, G.: Statistical detection of alarm conditions in building automation systems. In: Proc. IEEE Conference INDIN, pp. 6–9 (2006)

    Google Scholar 

  6. Crick, C., Pfeffer, A.: Loopy belief propagation as a basis for communication in sensor networks. In: Proc. UAI Conference on uncertainty in Artificial Intelligence, pp. 159–166 (2003)

    Google Scholar 

  7. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Characterization of belief propagation and its generalizations (2001), http://www.merl.com/publications/TR2001-015/ (accessed April 1, 2009)

  8. Lee, D.S.: On-line adaptive Gaussian mixture learning for video applications. In: Proc. 8th Conference on Computer Vision, Prague, Czech Republic (2004), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2197 (accessed March 29, 2009)

  9. Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural Proc. Letters 15(1) (2002), http://www.cs.uoi.gr/~arly/papers/gem-npl.ps.gz (accessed March 30, 2009)

  10. Ghahramani, Z., Beal, M.J.: Variation inference for Bayesian mixtures of factor analyzers. In: Advances in neural information processing systems. MIT Press, Cambridge (2000)

    Google Scholar 

  11. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E.: SMEM algorithm for mixture models. Neural Computation Archive 12 (2002)

    Google Scholar 

  12. Ghahramani, Z., Hinton, G.E.: The EM algorithm for mixture of factor analyzers. Technical Report CRG-TR-96-1, University of Toronto (1996)

    Google Scholar 

  13. Lombardi, P.: Study on data fusion techniques for visual modules. Technical Report, University of Pavia (2002)

    Google Scholar 

  14. Burgstaller, W.: Interpretation of situations in buildings. Dissertation thesis, Vienna University of Technology (2007)

    Google Scholar 

  15. Kindermann, R., Snell, J.L.: Markov random fields and their applications. AMS Books Online, ISBN: 0-8218-3381-2 (1980), www.ams.org/online_bks/conm1 (accessed March 24, 2009)

  16. Bauer, D., Brändle, N., Seer, S., Pflugfelder, R.: Finding highly frequented paths in video sequences. In: Proc. 18th Intern. Conference on Pattern Recognition (ICPR 2006), Hong Kong, China, pp. 387–391 (2006)

    Google Scholar 

  17. Fritzke, B.: A growing neural gas network leans topologies. In: Advances in Neural Information Processing Systems, vol. 7, pp. 625–632 (1995)

    Google Scholar 

  18. Pflugfelder, R.P.: Visual traffic surveillance using real-time tracking. TR PRIP, Vienna University of Technology (2002), http://www.icg.tu-graz.ac.at/pub/pubobjects/pflugfelder2002 (accessed March 25, 2009)

  19. Bruckner, D., Kasbi, J., Velik, R., Herzner, W.: High-level hierarchical semantic processing framework for smart sensor networks. In: Proc. IEEE Conference on Human System Interaction, Cracow, Poland, pp. 668–673 (2008)

    Google Scholar 

  20. Picus, C., Cambrini, L., Herzner, W.: Boltzmann machine learning approach for distributed sensor networks using loopy belief propagation inference. In: Proc. 7th Intern. Conference on Machine Learning and Applications, San Diego, CA, pp. 344–349 (2008)

    Google Scholar 

  21. Wide, P.: The electronic head: a virtual quality instrument. IEEE Transactions on Industrial Electronics (48), 766–769 (2001)

    Google Scholar 

  22. Simo, J., Benet, G., Andreu, G.: Embedded video processing for distributed intelligent sensor networks. In: Proc. 3rd Intern. Conference From Scientific Computing to Computational Engineering, Athens, Greece (2008)

    Google Scholar 

  23. Tsahalis, D., Nokas, G., Tsokas, K., Photeinos, D.: The use of decision tree classifiers for the detection of sound objects using microphone array filtered data. Part I and II. In: Proc. 3rd intern. conference From Scientific Computing to computational Engineering, Athens, Greece (2008)

    Google Scholar 

  24. Yin, G.Q., Bruckner, D., Zucker, G.: Statistical modeling of video object’s behavior for improved object tracking in visual surveillance. In: Proc. IEEE ICIT Conference, Churchill, Victoria, Australia (2009)

    Google Scholar 

  25. Anon. CAVIAR dataset, http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ (accessed March 26, 2009)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruckner, D., Picus, C., Velik, R., Herzner, W., Zucker, G. (2009). High-Level Hierarchical Semantic Processing Framework for Smart Sensor Networks. In: Hippe, Z.S., Kulikowski, J.L. (eds) Human-Computer Systems Interaction. Advances in Intelligent and Soft Computing, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03202-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03202-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03201-1

  • Online ISBN: 978-3-642-03202-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics