Advertisement

Causality in Superluminal Pulse Propagation

  • Robert W. Boyd
  • Daniel J. Gauthier
  • Paul Narum
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 789)

Abstract

The theory of electromagnetism for wave propagation in vacuum, as embodied by Maxwell’s equations, contains physical constants that can be combined to arrive at the speed of light in vacuum c. As shown by Einstein, consideration of the space–time transformation properties of Maxwell’s equations leads to the special theory of relativity. One consequence of this theory is that no information can be transmitted between two parties in a time shorter than it would take light, propagating through vacuum, to travel between the parties. That is, the speed of information transfer is less than or equal to the speed of light in vacuum c and information related to an event stays within the so-called light cone associated with the event. Hypothetical faster-than-light (superluminal) communication is very intriguing because relativistic causality would be violated. Relativistic causality is a principle by which an event is linked to a previous cause as viewed from any inertial frame of reference; superluminal communication would allow us to change the outcome of an event after it has happened.

Keywords

Group Velocity Special Theory Input Pulse Electromagnetically Induce Transparency Polarize Beam Splitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

RWB and DJG gratefully acknowledge support from the DARPA/DSO Slow Light Program, and RWB from the NSF.

References

  1. 1.
    M. Fayngold, Special Relativity and Motions Faster than Light (Wiley-VCH Verlag GmbH, Weinheim, 2002)Google Scholar
  2. 2.
    J.A. Zensus, T.J. Pearson, (eds.), Superluminal Radio Sources (Cambridge University Press, Cambridge, 1987)Google Scholar
  3. 3.
    H. Winful, Phys. Rep. 436,1 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    R. Smith, Am. J. Phys. 38, 978 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    P.W. Milonni, Fast Light, Slow Light, and Left-Handed Light (Institute of Physics Publishing, Bristol, 2005)Google Scholar
  6. 6.
    R. Loudon, J. Phys. A 3, 233 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    M. Lisak, J. Phys. A 9, 1145 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    G.C. Sherman, K.E. Oughstun, Phys. Rev. Lett. 47, 1451 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    G.C. Sherman, K.E. Oughstun, J. Opt. Soc. Am. B 12, 229 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    J. Aaviksoo, J. Lipmaa, J. Kuhl, J. Opt. Soc. Am. B 8, 1631 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    R.Y. Chiao, A.M. Steinberg, in Progress in Optics 37, E. Wolf (ed.) (Elsevier, Amsterdam, 1997).Google Scholar
  12. 12.
    J. Peatross, S.A. Glasgow, M. Ware, Phys. Rev. Lett. 84, 2370 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    N.A. Cartwright, K.E. Oughstun, J. Opt. Soc. Am. A 21, 439 (2004)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    W.R. Hamilton, Proc. R. Irish Acad. 1, 341 (1839)Google Scholar
  15. 15.
    L. Rayleigh (J.W. Strutt), Nature 24, 382 (1881)Google Scholar
  16. 16.
    L. Rayleigh (J.W. Strutt), Nature 25, 52 (1881)Google Scholar
  17. 17.
    H.A. Lorentz, Theory of Electrons (1909), reprinted by Dover Publications, New York (1952)Google Scholar
  18. 18.
    F.R. Faxvog, J.A. Carruthers, J. Appl. Phys. 41, 2457 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    F.R. Faxvog, C.N.Y. Chow, T. Bieber, J.A. Carruthers, Appl. Phys. Lett. 17, 192 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    S. Chu, S. Wong, Phys. Rev. Lett. 49, 1293 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    B. Ségard, B. Macke, Phys. Lett. A 109, 213 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully, Phys. Rev. Lett. 82, 5229 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Phys. Rev. Lett. 90, 113903 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R.W. Boyd, Science 312, 985 (2006)CrossRefGoogle Scholar
  27. 27.
    Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z.M. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    K.Y. Song, M.G. Herraez, L. Thevenaz, Opt. Express 13, 82 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    J.E. Sharping, Y. Okawachi, A.L. Gaeta, Opt. Express 13, 6092 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Y.A. Vlasov, M.O. Boyle, H.F. Hamann, S.J. McNab, Nature 438, 65 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    R.M. Camacho, M.V. Pack, J.C. Howell, A. Schweinsberg, R.W. Boyd, Phys. Rev. Lett. 98, 153601 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    The work of A. Sommerfeld and L. Brillouin from 1914 is translated into English and collected in the book: L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960)Google Scholar
  33. 33.
    C.G.B. Garrett, D.E. McCumber, Phys. Rev. A 1, 305 (1970)ADSCrossRefGoogle Scholar
  34. 34.
    B. Ségard, B. Macke, Phys. Lett. 109, 213 (1985)CrossRefGoogle Scholar
  35. 35.
    A.M. Akulshin, A. Cimmino, G.I. Opat, Quantum Electron. 32, 567 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    A.M. Steinberg, R.Y. Chiao, Phys. Rev. A 49, 2071 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    R.Y. Chiao, in Amazing Light: A Volume Dedicated to Charles Hard Townes on His 80th Birthday, R.Y. Chiao (ed.) (Springer, New York, 1996), p. 91Google Scholar
  38. 38.
    R.Y. Chiao, A.M. Steinberg, Tunneling times and superluminality, in Progress in Optics XXXVII, E. Wolf, (ed.) (Elsevier Science, Amsterdam, 1997), Ch. VI., pp. 345–405CrossRefGoogle Scholar
  39. 39.
    J.C. Garrison, M.W. Mitchell, R.Y. Chiao, E.L. Bolda, Phys. Lett. A 245, 19 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    M.C. Parker, S.D. Walker, Opt. Commun. 229, 23 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    M.D. Stenner, D.J. Gauthier, M.A. Neifeld, Nature 425, 695 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    M.D. Stenner, D.J. Gauthier, M.A. Neifeld, Phys. Rev. Lett. 94, 053901 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    H. Jeong, A.M.C. Dawes, D.J. Gauthier, Phys. Rev. Lett. 96, 143901 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    G. Diener, Phys. Lett. A 223, 327 (1996)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    G. Kurizki, A. Kozhekin, A.G. Kofman, Europhys. Lett. 42, 499 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    A. Kuzmich, A. Dogariu, L.J. Wang, P.W. Milonni, R.Y. Chiao, Phys. Rev. Lett. 86, 3925 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    K. Wynne, Opt. Commun. 209, 85 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, Y. Fukuda, Phys. Rev. A 68, 053801 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    A. Ruschhaupt, J.G. Muga, Phys. Rev. Lett. 93, 020403 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    B.D. Clader, Q-Han Park, J.H. Eberly, Opt. Lett. 31, 2921 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    M. Jammer, Concepts of Simultaneity (Johns Hopkins University Press, Baltimore, 2006)zbMATHGoogle Scholar
  53. 53.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 1 (Addison-Wesley, Reading, 1963). See Section 46–4.zbMATHGoogle Scholar
  54. 54.
    St. Augustine, Confessions, book 7, chapter 6 (ca. 397 AD)Google Scholar
  55. 55.
    A.S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1923)zbMATHGoogle Scholar
  56. 56.
    A. Einstein, Relativity: The Special and the General Theory – A Clear Explanation that Anyone Can Understand (Gramercy, New York, 1988)Google Scholar
  57. 57.
    W.R. LeFew, S. Venakides, D.J. Gauthier, preprint (2008) Available at: http://arxiv.org/PScache/arxiv/pdf/0705/0705.4238v2.pdf
  58. 58.
    N. Herbert, Found. Phys. 12, 1171 (1982)ADSCrossRefGoogle Scholar
  59. 59.
    N. Herbert, Faster Than Light (New American Library Books, Penguin Inc., New York, 1998)Google Scholar
  60. 60.
    D. Dieks, Phys. Lett. 92A, 271 (1982)ADSCrossRefGoogle Scholar
  61. 61.
    R.J. Glauber, in New Techniques and Ideas in Quantum Measurement Theory, D.M. Greenberg (ed.), Ann. N.Y. Acad. Sci. 480, 336 (1986)Google Scholar
  62. 62.
    W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982)ADSCrossRefGoogle Scholar
  63. 63.
    V. Bužek, M. Hillery, Phys. Rev. A 54, 1844 (1996)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    N. Gisin, Phys. Lett. A 242, 1 (1998)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    H. Cao, A. Dogariu, L.J. Wang, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003)CrossRefGoogle Scholar
  66. 66.
    R.W. Boyd, D.J. Gauthier, A.L. Gaeta, A.E. Willner, Phys. Rev. A 71, 023801 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    M.D. Stenner, M.A. Neifeld, Z. Zhu, A.M.C. Dawes, D.J. Gauthier, Opt. Express 13, 9995 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    B. Macke, B. Ségard, F. Wielonsky, Phys. Rev. E 72, 035601(R) (2005)ADSCrossRefGoogle Scholar
  69. 69.
    Z. Shi, R. Pant, Z. Zhu, M.D. Stenner, M.A. Neifeld, D. J. Gauthier, R.W. Boyd, Opt. Lett 32, 1986 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    M.W. Mitchell, R.Y. Chiao, Phys. Lett. A 230, 133 (1999)ADSCrossRefGoogle Scholar
  71. 71.
    R.W. Boyd, P. Narum, J. Mod. Opt. 54, 2403 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Robert W. Boyd
    • 1
  • Daniel J. Gauthier
    • 2
  • Paul Narum
    • 3
  1. 1.The Institute of Optics and Department of Physics and AstronomyUniversity of RochesterRochesterUSA
  2. 2.Department of PhysicsDuke UniversityDurhamUSA
  3. 3.Norwegian Defence Research EstablishmentKjellerNorway

Personalised recommendations