Skip to main content

Candida albicans Cell Wall Mediated Virulence

  • Chapter
  • First Online:
Pathogenic Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

Abstract

Fungal cells are covered in a polysaccharide-rich coat that protects them from the external environment, acts as a barrier and filter, and resists internal turgor pressure. The tensile strength provided by the mature cell wall is co-ordinated with zones of new polarised growth (germination, septal formation, hyphal tips and branches) where the wall must retain its integrity, as new cell wall material is inserted and assembled. Therefore, there is a careful balance between wall rigidification and wall re-moulding to enable morphogenesis and growth. In this chapter we will discover that the overall cell wall structure can adapt and respond to external and internal factors, and by remodelling the wall in response to such stimuli fungal cells minimise any loss of cellular integrity. In fungal pathogens the cell wall provides the interface with the host and so a number of cell wall associated components have been identified that play important roles in fungal-host interactions. Here we will describe cell wall components that play roles in virulence, either directly or by modulating the host’s immune responses using Candida albicans as a model fungal pathogen of humans. The main focus will be in recent advances of our understanding of the regulation and dissection of cell wall components using molecular approaches. Readers are also directed to other excellent C. albicans cell wall reviews and book chapters (Klis et al. 2001; Chauhan et al. 2002; Ruiz-Herrera et al. 2006; Sohn et al. 2006; Chaffin 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008

    Article  PubMed  CAS  Google Scholar 

  • Alberti-Segui C, Morales AJ, Xing H, Kessler MM, Willins DA, Weinstock KG, Cottarel G, Fechtel K, Rogers B (2004) Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast 21:285–302

    Article  PubMed  CAS  Google Scholar 

  • Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, Filler SG, Hube B (2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4:e1000217

    Article  PubMed  CAS  Google Scholar 

  • Alvarez FJ, Konopka JB (2006) Identification of an N-Acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell 18:965–975

    Article  PubMed  CAS  Google Scholar 

  • Anderson J, Mihalik R, Soll DR (1990) Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol 172:224–235

    PubMed  CAS  Google Scholar 

  • Angiolella L, Facchin M, Stringaro A, Maras B, Simonetti N, Cassone A (1996) Identification of a glucan-associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics. J Infect Dis 173:684–690

    PubMed  CAS  Google Scholar 

  • Bailey DA, Feldmann PJF, Bovey M, Gow NAR, Brown AJP (1996) The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178:5353–5360

    PubMed  CAS  Google Scholar 

  • Bastidas RJ, Heitman J, Cardenas ME (2009) The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 5:e1000294

    Article  PubMed  CAS  Google Scholar 

  • Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJ, Odds FC, Gow NA (2005) Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2 + -ATPase, is required for glycosylation and virulence. J Biol Chem 280:23408–23415

    Article  PubMed  CAS  Google Scholar 

  • Bates S, Hughes HB, Munro CA, Thomas WP, MacCallum DM, Bertram G, Atrih A, Ferguson MA, Brown AJ, Odds FC, Gow NA (2006) Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem 281:90–98

    Article  PubMed  CAS  Google Scholar 

  • Bendel CM, Kinneberg KM, Jechorek RP, Gale CA, Erlandsen SL, Hostetter MK, Wells CL (1999) Systemic infection following intravenous inoculation of mice with Candida albicans int1 mutant strains. Mol Genet Metab 67:343–351

    Article  PubMed  CAS  Google Scholar 

  • Bensen ES, Martin SJ, Li M, Berman J, Davis DA (2004) Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54:1335–1351

    Article  PubMed  CAS  Google Scholar 

  • Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156:31–44

    PubMed  CAS  Google Scholar 

  • Brena S, Omaetxebarria MJ, Elguezabal N, Cabezas J, Moragues MD, Ponton J (2007) Fungicidal monoclonal antibody C7 binds to Candida albicans Als3. Infect Immun 75:3680–3682

    Article  PubMed  CAS  Google Scholar 

  • Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, De Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662

    Google Scholar 

  • Cabib E, Blanco N, Grau C, Rodriguez-Pena JM, Arroyo J (2007) Crh1p and Crh2p are required for the cross-linking of chitin to beta(1–6)glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol 63:921–935

    Article  PubMed  CAS  Google Scholar 

  • Cabib E, Farkas V, Kosik O, Blanco N, Arroyo J, McPhie P (2008) Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 283:29859–29872

    Article  PubMed  CAS  Google Scholar 

  • Calderone RA (1993) Recognition between Candida albicans and host cells. Trends Microbiol 1:55–58

    Article  PubMed  CAS  Google Scholar 

  • Calderone RA, Braun PC (1991) Adherence and receptor relationships of Candida albicans. Microbiol Rev 55:1–20

    PubMed  CAS  Google Scholar 

  • Calderone RA, Gow NAR (2002) Host recognition by Candida species. In: Calderone RA (ed) Candida and candidiasis. ASM press, Washington DC, pp 67–86

    Google Scholar 

  • Cappellaro C, Mrsa V, Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180:5030–5037

    PubMed  CAS  Google Scholar 

  • Carotti C, Ragni E, Palomares O, Fontaine T, Tedeschi G, Rodriguez R, Latge JP, Vai M, Popolo L (2004) Characterization of recombinant forms of the yeast Gas1 protein and identification of residues essential for glucanosyltransferase activity and folding. Eur J Biochem 271:3635–3645

    Article  PubMed  CAS  Google Scholar 

  • Cassone A (2008) Fungal vaccines: real progress from real challenges. Lancet Infect Dis 8:114–124

    Article  PubMed  CAS  Google Scholar 

  • Castillo L, Calvo E, Martinez AI, Ruiz-Herrera J, Valentin E, Lopez JA, Sentandreu R (2008) A study of the Candida albicans cell wall proteome. Proteomics 8:3871–3881

    Article  PubMed  CAS  Google Scholar 

  • Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72:495–544

    Article  PubMed  CAS  Google Scholar 

  • Chauhan N, Li D, Singh P, Calderone RA, Kruppa M (2002) The cell wall of Candida spp. In: Calderone RA (ed) Candida and candidiasis. ASM press, Washington DC, pp 159–175

    Google Scholar 

  • Chiew YY, Sullivan PA, Shepherd MG (1982) The effects of ergosterol and alcohols on germ-tube formation and chitin synthase in Candida albicans. Can J Biochem 60:15–20

    Article  PubMed  CAS  Google Scholar 

  • Corbucci C, Cenci E, Skrzypek F, Gabrielli E, Mosci P, Ernst JF, Bistoni F, Vecchiarelli A (2007) Immune response to Candida albicans is preserved despite defect in O-mannosylation of secretory proteins. Med Mycol 45:709–719

    Article  PubMed  Google Scholar 

  • Coronado JE, Mneimneh S, Epstein SL, Qiu WG, Lipke PN (2007) Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell 6:2269–2277

    Article  PubMed  CAS  Google Scholar 

  • Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NA, Booth NA (2003) Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47:1637–1651

    Article  PubMed  CAS  Google Scholar 

  • Cutler JE, Deepe GS Jr, Klein BS (2007) Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 5:13–28

    Article  PubMed  CAS  Google Scholar 

  • Da Silva CA, Hartl D, Liu W, Lee CG, Elias JA (2008) TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol 181:4279–4286

    PubMed  Google Scholar 

  • Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JA (2009) Chitin is a size-dependent regulator of macrophage TNF and IL-10 Production. J Immunol 182:3573–3582

    Article  PubMed  CAS  Google Scholar 

  • Daniels KJ, Lockhart SR, Staab JF, Sundstrom P, Soll DR (2003) The adhesin Hwp1 and the first daughter cell localize to the a/a portion of the conjugation bridge during Candida albicans mating. Mol Biol Cell 14:4920–4930

    Article  PubMed  CAS  Google Scholar 

  • Davis D, Edwards JE Jr, Mitchell AP, Ibrahim AS (2000) Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68:5953–5959

    Article  PubMed  CAS  Google Scholar 

  • De Bernardis F, Muhlschlegel FA, Cassone A, Fonzi WA (1998) The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun Vol 66:3325

    Google Scholar 

  • De Bernardis F, Liu H, O'Mahony R, La Valle R, Bartollino S, Sandini S, Grant S, Brewis N, Tomlinson I, Basset RC, Holton J, Roitt IM, Cassone A (2007) Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis 195:149–157

    Article  PubMed  Google Scholar 

  • De Groot PW, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796

    Article  PubMed  CAS  Google Scholar 

  • De Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965

    Article  PubMed  CAS  Google Scholar 

  • De Groot PW, Brandt BW, Klis FM (2007) Cell wall biology of Candida. In: d’Enfert C, Hube B (ed) Candida: Comparative and functional genomics. Caister Academic press, Norfolk, pp 291–323

    Google Scholar 

  • d'Enfert C (2006) Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 7:465–470

    Article  PubMed  Google Scholar 

  • Devore-Carter D, Kar S, Vellucci V, Bhattacherjee V, Domanski P, Hostetter MK (2008) Superantigen-like effects of a Candida albicans polypeptide. J Infect Dis 197:981–989

    Article  PubMed  CAS  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    Article  PubMed  CAS  Google Scholar 

  • Ebanks RO, Chisholm K, McKinnon S, Whiteway M, Pinto DM (2006) Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins. Proteomics 6: 2147–2156

    Article  PubMed  CAS  Google Scholar 

  • Ecker M, Deutzmann R, Lehle L, Mrsa V, Tanner W (2006) Pir proteins of Saccharomyces cerevisiae are attached to beta-1, 3-glucan by a new protein-carbohydrate linkage. J Biol Chem 281:11523–11529

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337:243–253

    Article  PubMed  CAS  Google Scholar 

  • Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ (2008) Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol 10:2058–2066

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol 6:99

    Article  CAS  Google Scholar 

  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415

    Article  PubMed  CAS  Google Scholar 

  • Fradin C, Slomianny MC, Mille C, Masset A, Robert R, Sendid B, Ernst JF, Michalski JC, Poulain D (2008) Beta-1, 2 oligomannose adhesin epitopes are widely distributed over the different families of Candida albicans cell wall mannoproteins and are associated through both N- and O-glycosylation processes. Infect Immun 76:4509–4517

    Article  PubMed  CAS  Google Scholar 

  • Frieman MB, Cormack BP (2003) The omega-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol Microbiol 50:883–896

    Article  PubMed  CAS  Google Scholar 

  • Frieman MB, Cormack BP (2004) Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150:3105–3114

    Article  PubMed  CAS  Google Scholar 

  • Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K (2009) C. albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 71:240–52

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Luo G, Spellberg BJ, Edwards JE Jr, Ibrahim AS (2008) Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell 7:483–492

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Jigami Y (2008) Lipid remodeling of GPI-anchored proteins and its function. Biochimica et Biophysica Acta (BBA) 1780:410–420

    CAS  Google Scholar 

  • Gale C, Finkel D, Tao N, Meinke M, McClellan M, Olson J, Kendrick K, Hostetter M (1996) Cloning and expression of a gene encoding an integrin-like protein in Candida albicans. Proc Natl Acad Sci USA 93:357–361

    Article  PubMed  CAS  Google Scholar 

  • Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, Hostetter MK (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Gale C, Gerami-Nejad M, McClellan M, Vandoninck S, Longtine MS, Berman J (2001) Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells. Mol Biol Cell 12:3538–3549

    PubMed  CAS  Google Scholar 

  • Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d'Enfert C (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545

    Article  PubMed  CAS  Google Scholar 

  • Gaur NK, Klotz SA (1997) Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65:5289–5294

    PubMed  CAS  Google Scholar 

  • Gaur NK, Klotz SA, Henderson RL (1999) Overexpression of the Candida albicans ALA1 gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans. Infect Immun 67:6040–6047

    PubMed  CAS  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143

    Article  PubMed  CAS  Google Scholar 

  • Ghannoum MA, Spellberg B, Saporito-Irwin SM, Fonzi WA (1995) Reduced virulence of Candida albicans PHR1 mutants. Infect Immun 63:4528–4530

    PubMed  CAS  Google Scholar 

  • Gow NA, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM, Walker L, Jansen T, Jacobs L, Tsoni V, Brown GD, Odds FC, Van Der Meer JW, Brown AJ, Kullberg BJ (2007) Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis 196:1565–1571

    Article  PubMed  CAS  Google Scholar 

  • Goyard S, Knechtle P, Chauvel M, Mallet A, Prevost MC, Proux C, Coppee JY, Schwartz P, Dromer F, Park H, Filler SG, Janbon G, d'Enfert C (2008) The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol Biol Cell 19:2251–2266

    Article  PubMed  CAS  Google Scholar 

  • Granger BL, Flenniken ML, Davis DA, Mitchell AP, Cutler JE (2005) Yeast wall protein 1 of Candida albicans. Microbiology 151:1631–1644

    Article  PubMed  CAS  Google Scholar 

  • Grimme SJ, Colussi PA, Taron CH, Orlean P (2004) Deficiencies in the essential Smp3 mannosyltransferase block glycosylphosphatidylinositol assembly and lead to defects in growth and cell wall biogenesis in Candida albicans. Microbiology 150:3115–3128

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Holdom MD (1999) Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol 37:375–389

    Article  PubMed  CAS  Google Scholar 

  • Hazen KC, Hazen BW (1992) Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans. Infect Immun 60:1499–1508

    PubMed  CAS  Google Scholar 

  • Hazen KC, Brawner DL, Riesselman MH, Jutila MA, Cutler JE (1991) Differential adherence of hydrophobic and hydrophilic Candida albicans yeast cells to mouse tissues. Infect Immun 59:907–912

    PubMed  CAS  Google Scholar 

  • Hazen KC, Mandell G, Coleman E, Wu G (2000) Influence of fluconazole at subinhibitory concentrations on cell surface hydrophobicity and phagocytosis of Candida albicans. FEMS Microbiol Lett 183:89–94

    Article  PubMed  CAS  Google Scholar 

  • Heinsbroek SE, Brown GD, Gordon S (2005) Dectin-1 escape by fungal dimorphism. Trends Immunol 26:352–354

    Article  PubMed  CAS  Google Scholar 

  • Herscovics A, Orlean P (1993) Glycoprotein biosynthesis in yeast. FASEB J 7:540–550

    PubMed  CAS  Google Scholar 

  • Hobson RP, Munro CA, Bates S, MacCallum DM, Cutler JE, Heinsbroek SE, Brown GD, Odds FC, Gow NA (2004) Loss of cell wall mannosylphosphate in Candida albicans does not influence macrophage recognition. J Biol Chem 279:39628–39635

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S (1998) Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL, Green CB, Oh SH, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family - a sticky pursuit. Med Mycol 46:1–15

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL, Green CB, Oh SH, Zhao X (2009) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family - a sticky pursuit. Med Mycol 46:1–15

    Article  CAS  Google Scholar 

  • Huang G, Srikantha T, Sahni N, Yi S, Soll DR (2009) CO(2) regulates white-to-opaque switching in Candida albicans. Curr Biol 19:330–334

    Article  PubMed  CAS  Google Scholar 

  • Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298

    Article  PubMed  CAS  Google Scholar 

  • Hurtado-Guerrero R, Schuttelkopf AW, Mouyna I, Ibrahim AF, Shepherd S, Fontaine T, Latge JP, van Aalten DM (2009) Molecular mechanisms of yeast cell wall glucan remodelling. J Biol Chem 284:8461–8469

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim AS, Spellberg BJ, Avanesian V, Fu Y, Edwards JE Jr (2006) The Anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect Immun 74:3039–3041

    Article  PubMed  CAS  Google Scholar 

  • Iranzo M, Aguado C, Pallotti C, Canizares JV, Mormeneo S (2002) The use of trypsin to solubilize wall proteins from Candida albicans led to the identification of chitinase 2 as an enzyme covalently linked to the yeast wall structure. Res Microbiol 153:227–232

    Article  PubMed  CAS  Google Scholar 

  • Jackson AP, Gamble J, Yeomans T, Barrell JF, Citiulo F, Coleman D, de Groot PW, Goodwin T, Keane T, Quail M, Munro C, Pain A, Poulter R, Rajandream M-A, Renauld R, Spiering M, Tivey A, Gow N, Barrell B, Sullivan D, Berriman M (2009) The Candida dubliniensis genome identifies evolutionary changes associated with fungal virulence in C. albicans. (unpublished)

    Google Scholar 

  • Jong AY, Chen SH, Stins MF, Kim KS, Tuan TL, Huang SH (2003) Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 52:615–622

    Article  PubMed  CAS  Google Scholar 

  • Jouault T, Ibata-Ombetta S, Takeuchi O, Trinel PA, Sacchetti P, Lefebvre P, Akira S, Poulain D (2003) Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188:165–172

    Article  PubMed  CAS  Google Scholar 

  • Jouault T, El Abed-El Behi M, Martinez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, Trottein F, Poulain D (2006) Specific recognition of Candida albicans by macrophages requires Galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177:4679–4687

    PubMed  CAS  Google Scholar 

  • Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21:2496–2505

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Wolyniak MJ, Staab JF, Sundstrom P (2007) A 368-base-pair cis-acting HWP1 promoter region, HCR, of Candida albicans confers hypha-specific gene regulation and binds architectural transcription factors Nhp6 and Gcf1p. Eukaryotic cell 6:693–709

    Article  PubMed  CAS  Google Scholar 

  • Kinneberg KM, Bendel CM, Jechorek RP, Cebelinski EA, Gale CA, Berman JG, Erlandsen SL, Hostetter MK, Wells CL (1999) Effect of INT1 gene on Candida albicans murine intestinal colonization. J Surg Res 87:245–251

    Article  PubMed  CAS  Google Scholar 

  • Klis FM, De Groot P, Hellingwerf K (2001) Molecular organisation of the cell wall of Candida albicans. Med Mycol 39:1–8

    PubMed  CAS  Google Scholar 

  • Klis FM, de Jong M, Brul S, De Groot PW (2007) Extraction of cell surface-associated proteins from living yeast cells. Yeast 24:253–258

    Article  PubMed  CAS  Google Scholar 

  • Klotz SA, Gaur NK, De Armond R, Sheppard D, Khardori N, Edwards JE Jr, Lipke PN, El Azizi M (2007) Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med Mycol 45:363–370

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto CA (2002) Candida biofilms. Curr Opin Microbiol 5:608–611

    Article  PubMed  CAS  Google Scholar 

  • Lee SA, Wormsley S, Kamoun S, Lee AF, Joiner K, Wong B (2003) An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20:595–610

    Article  PubMed  CAS  Google Scholar 

  • Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA (2008) Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 20:684–689

    Article  PubMed  CAS  Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  PubMed  CAS  Google Scholar 

  • Li F, Palecek SP (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Li F, Palecek SP (2008) Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154:1193–1203

    Article  PubMed  CAS  Google Scholar 

  • Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, Andes D, Palecek SP (2007) Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 6:931–939

    Article  PubMed  CAS  Google Scholar 

  • Lohse MB, Johnson AD (2008) Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS ONE 3:e1473

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Ribot JL, Casanova M, Murgui A, Martinez JP (2004) Antibody response to Candida albicans cell wall antigens. FEMS Immunol Med Microbiol 41:187–196

    Article  PubMed  CAS  Google Scholar 

  • Lotz H, Sohn K, Brunner H, Muhlschlegel FA, Rupp S (2004) RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Eukaryot Cell 3:776–784

    Article  PubMed  CAS  Google Scholar 

  • Lowman DW, Ferguson DA, Williams DL (2003) Structural characterization of (1→3)-[beta]–glucans isolated from blastospore and hyphal forms of Candida albicans. Carbohydr Res 338:1491–1496

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Zhang Z, Gast C, Wong B (2008) C-terminal signals regulate targeting of the GPI-anchored proteins to the cell wall or the plasma membrane in Candida albicans. Eukaryot Cell 7:1906–1915

    Article  PubMed  CAS  Google Scholar 

  • Martchenko M, Alarco AM, Harcus D, Whiteway M (2004) Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15:456–467

    Article  PubMed  CAS  Google Scholar 

  • Masuoka J, Hazen KC (1997) Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity. Microbiology 143:3015–3021

    Article  PubMed  CAS  Google Scholar 

  • Masuoka J, Hazen KC (1999) Differences in the acid-labile component of Candida albicans mannan from hydrophobic and hydrophilic yeast cells. Glycobiology 9:1281–1286

    Article  PubMed  CAS  Google Scholar 

  • Masuoka J, Hazen KC (2004) Cell wall mannan and cell surface hydrophobicity in Candida albicans serotype A and B strains. Infect Immun 72:6230–6236

    Article  PubMed  CAS  Google Scholar 

  • Melo NR, Moran GP, Warrilow AGS, Dudley E, Smith SN, Sullivan DJ, Lamb DC, Kelly DE, Coleman DC, Kelly SL (2008) CYP56 (Dit2p) in Candida albicans: Characterization and investigation of its role in growth and antifungal drug susceptibility. Antimicrob Agents Chemother 52:3718–3724

    Article  PubMed  CAS  Google Scholar 

  • Mille C, Bobrowicz P, Trinel PA, Li H, Maes E, Guerardel Y, Fradin C, Martinez-Esparza M, Davidson RC, Janbon G, Poulain D, Wildt S (2008) Identification of a new family of genes involved in beta-1, 2 mannosylation of glycans in Pichia pastoris and Candida albicans. J Biol Chem 283:9724–9736

    Article  PubMed  CAS  Google Scholar 

  • Miller MG, Johnson AD (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293–302

    Article  PubMed  CAS  Google Scholar 

  • Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latge JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

    Article  PubMed  CAS  Google Scholar 

  • Muhlschlegel FA, Fonzi WA (1997) PHR2 of Candida albicans encodes a functional homolog of the pH- regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967

    PubMed  CAS  Google Scholar 

  • Munro CA, Schofield DA, Gooday GW, Gow NAR (1998) Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology 144:391–401

    Article  PubMed  CAS  Google Scholar 

  • Munro CA, Bates S, Buurman ET, Hughes HB, MacCallum DM, Bertram G, Atrih A, Ferguson MA, Bain JM, Brand A, Hamilton S, Westwater C, Thomson LM, Brown AJ, Odds FC, Gow NA (2005) Mnt1p and Mnt2p of Candida albicans are partially redundant α-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 280:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het HM, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465

    Article  PubMed  CAS  Google Scholar 

  • Netea MG, Gow NA, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes HB, Jansen T, Jacobs L, Buurman ET, Gijzen K, Williams DL, Torensma R, McKinnon A, MacCallum DM, Odds FC, Van Der Meer JW, Brown AJ, Kullberg BJ (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116:1642–1650

    Article  PubMed  CAS  Google Scholar 

  • Netea MG, Brown GD, Kullberg BJ, Gow NA (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78

    Article  PubMed  CAS  Google Scholar 

  • Nett J, Andes D (2006) Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 9:340–345

    Article  PubMed  CAS  Google Scholar 

  • Nett J, Lincoln L, Marchillo K, Andes D (2007a) Beta -1, 3 glucan as a test for central venous catheter biofilm infection. J Infect Dis 195:1705–1712

    Article  PubMed  CAS  Google Scholar 

  • Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D (2007b) Putative role of beta-1, 3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP (2006a) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2:e63

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006b) Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5:1604–1610

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP (2008a) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault JS, Nantel A, Mitchell AP, Filler SG (2008b) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10:2180–2196

    Article  PubMed  CAS  Google Scholar 

  • Oh SH, Cheng G, Nuessen JA, Jajko R, Yeater KM, Zhao X, Pujol C, Soll DR, Hoyer LL (2005) Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673–681

    Article  PubMed  CAS  Google Scholar 

  • Orlean P, Menon A (2007) Thematic review series: Lipid Posttranslational Modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48:993–1011

    Article  PubMed  CAS  Google Scholar 

  • Otoo HN, Lee KG, Qiu W, Lipke PN (2007) Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell 7:776–82

    Article  PubMed  CAS  Google Scholar 

  • Peltroche-Llacsahuanga H, Goyard S, d'Enfert C, Prill SK, Ernst JF (2006) Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans. Antimicrob Agents Chemother 50:3488–3491

    Article  PubMed  CAS  Google Scholar 

  • Perez A, Pedros B, Murgui A, Casanova M, Lopez-Ribot JL, Martinez JP (2006) Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res 6:1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE, Filler SG (2007) Als3 Is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64

    Article  PubMed  CAS  Google Scholar 

  • Pierce CG, Thomas DP, Lopez-Ribot JL (2009) Effect of tunicamycin on Candida albicans biofilm formation and maintenance. J Antimicrob Chemother 63:473–479

    Article  PubMed  CAS  Google Scholar 

  • Pietrella D, Bistoni G, Corbucci C, Perito S, Vecchiarelli A (2006) Candida albicans mannoprotein influences the biological function of dendritic cells. Cell Microbiol 8:602–612

    Article  PubMed  CAS  Google Scholar 

  • Pietrella D, Lupo P, Rachini A, Sandini S, Ciervo A, Perito S, Bistoni F, Vecchiarelli A (2008) A Candida albicans mannoprotein deprived of its mannan moiety is efficiently taken up and processed by human dendritic cells and induces T-cell activation without stimulating proinflammatory cytokine production. Infect Immun 76:4359–4367

    Article  PubMed  CAS  Google Scholar 

  • Pitarch A, Pardo M, Jimenez A, Pla J, Gil C, Sanchez M, Nombela C (1999) Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electrophoresis 20:1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Pitarch A, Diez-Orejas R, Molero G, Pardo M, Sanchez M, Gil C, Nombela C (2001) Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics 1:550–559

    Article  PubMed  CAS  Google Scholar 

  • Pitarch A, Sanchez M, Nombela C, Gil C (2002) Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1:967–982

    Article  PubMed  CAS  Google Scholar 

  • Pitarch A, Jimenez A, Nombela C, Gil C (2006) Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol Cell Proteomics 5:79–96

    PubMed  CAS  Google Scholar 

  • Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, Gaillardin C, Munro CA, Richard ML (2008a) Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 45:1404–1414

    Article  PubMed  CAS  Google Scholar 

  • Plaine A, Yanez A, Murciano C, Gaillardin C, Gil ML, Richard ML, Gozalbo D (2008b) Enhanced proinflammatory response to the Candida albicans gpi7 null mutant by murine cells. Microbes Infect 10:382–389

    Article  PubMed  CAS  Google Scholar 

  • Prill SK, Klinkert B, Timpel C, Gale CA, Schroppel K, Ernst JF (2005) PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 55:546–560

    Article  PubMed  CAS  Google Scholar 

  • Ramage G, Wickes BL, Lopez-Ribot JL (2001) Biofilms of Candida albicans and their associated resistance to antifungal agents. Am Clin Lab 20:42–44

    PubMed  CAS  Google Scholar 

  • Ramon AM, Fonzi WA (2003) Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell 2:718–728

    Article  PubMed  CAS  Google Scholar 

  • Rauceo JM, Dearmond R, Otoo H, Kahn PC, Klotz SA, Gaur NK, Lipke PN (2006) Threonine-rich repeats increase fibronectin binding in the C. albicans adhesin Als5p. Eukaryot Cell 5:1664–1673

    Article  PubMed  CAS  Google Scholar 

  • Reid DM, Gow NA, Brown GD (2009) Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol 1:30–37

    Article  CAS  Google Scholar 

  • Richard ML, Plaine A (2007) Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133

    Article  PubMed  CAS  Google Scholar 

  • Richard M, De Groot P, Courtin O, Poulain D, Klis F, Gaillardin C (2002) GPI7 affects cell-wall protein anchorage in Saccharomyces cerevisiae and Candida albicans. Microbiology 148:2125–2133

    PubMed  CAS  Google Scholar 

  • Richard ML, Nobile CJ, Bruno VM, Mitchell AP (2005) Candida albicans biofilm-defective mutants. Eukaryot Cell 4:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Rouabhia M, Schaller M, Corbucci C, Vecchiarelli A, Prill SK, Giasson L, Ernst JF (2005) Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect Immun 73:4571–4580

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R (2006) Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6:14–29

    Article  PubMed  CAS  Google Scholar 

  • Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613

    PubMed  CAS  Google Scholar 

  • Sevilla MJ, Robledo B, Rementeria A, Moragues MD, Ponton J (2006) A fungicidal monoclonal antibody protects against murine invasive candidiasis. Infect Immun 74:3042–3045

    Article  PubMed  CAS  Google Scholar 

  • Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE Jr (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279:30480–30489

    Article  PubMed  CAS  Google Scholar 

  • Shibata N, Suzuki A, Kobayashi H, Okawa Y (2007) Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem J 404:365–372

    Article  PubMed  CAS  Google Scholar 

  • Singleton DR, Masuoka J, Hazen KC (2001) Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol 183:3582–3588

    Article  PubMed  CAS  Google Scholar 

  • Singleton DR, Fidel PL Jr, Wozniak KL, Hazen KC (2005a) Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. FEMS Microbiol Lett 244:373–377

    Article  PubMed  CAS  Google Scholar 

  • Singleton DR, Masuoka J, Hazen KC (2005b) Surface hydrophobicity changes of two Candida albicans serotype B mnn4delta mutants. Eukaryot Cell 4:639–648

    Article  PubMed  CAS  Google Scholar 

  • Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR (1987) "White-opaque transition": a second high-frequency switching system in Candida albicans. Journal of Bacteriology 169:189–197

    PubMed  CAS  Google Scholar 

  • Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–737

    Article  PubMed  CAS  Google Scholar 

  • Soares RM, de ASR, Alviano DS, Angluster J, Alviano CS, Travassos LR (2000) Identification of sialic acids on the cell surface of Candida albicans. Biochim Biophys Acta 1474:262–268

    PubMed  CAS  Google Scholar 

  • Sohn K, Urban C, Brunner H, Rupp S (2003) EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 47:89–102

    Article  PubMed  CAS  Google Scholar 

  • Sohn K, Schwenk J, Urban C, Lechner J, Schweikert M, Rupp S (2006) Getting in touch with Candida albicans: the cell wall of a fungal pathogen. Curr Drug Targets 7:505–512

    Article  PubMed  CAS  Google Scholar 

  • Soll DR, Lockhart SR, Zhao R (2003) Relationship between switching and mating in Candida albicans. Eukaryot Cell 2:390–397

    Article  PubMed  CAS  Google Scholar 

  • Soloviev DA, Fonzi WA, Sentandreu R, Pluskota E, Forsyth CB, Yadav S, Plow EF (2007) Identification of pH-regulated antigen 1 released from Candida albicans as the major ligand for leukocyte integrin alphaMbeta2. J Immunol 178:2038–2046

    PubMed  CAS  Google Scholar 

  • Sonneborn A, Tebarth B, Ernst JF (1999) Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun 67:4655–4660

    PubMed  CAS  Google Scholar 

  • Srikantha T, Borneman AR, Daniels KJ, Pujol C, Wu W, Seringhaus MR, Gerstein M, Yi S, Snyder M, Soll DR (2006) TOS9 regulates white-opaque switching in Candida albicans. Eukaryot Cell 5:1674–1687

    Article  PubMed  CAS  Google Scholar 

  • Staab JF, Ferrer CA, Sundstrom P (1996) Developmental expression of a tandemly repeated, proline and glutamine rich amino acid motif on hyphal surfaces of Candida albicans. J Biol Chem 271:6298–6305

    Article  PubMed  CAS  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    Article  PubMed  CAS  Google Scholar 

  • Staab JF, Bahn YS, Thai CH, Cook PF, Sundstrom P (2004) Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J Biol Chem 279:40737–40747

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PA, Yin CY, Molloy C, Templeton MD, Shepherd MG (1983) An analysis of the metabolism and cell wall composition of Candida albicans during germ tube formation. Can J Microbiol 29:1514–1525

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4:461–469

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S (2002) Serological differences among pathogenic Candida spp. In: Calderone RA (ed) Candida and candidiasis. ASM press, Washington DC, pp 29–36

    Google Scholar 

  • Theiss S, Ishdorj G, Brenot A, Kretschmar M, Lan CY, Nichterlein T, Hacker J, Nigam S, Agabian N, Kohler GA (2006) Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int J Med Microbiol 296:405–420

    Article  PubMed  CAS  Google Scholar 

  • Timpel C, Strahl-Bolsinger S, Ziegelbauer K, Ernst JF (1998) Multiple functions of Pmt1p-mediated protein O-mannosylation in the fungal pathogen Candida albicans. J Biol Chem 273:20837–20846

    Article  PubMed  CAS  Google Scholar 

  • Torosantucci A, Boccanera M, Casalinuovo I, Pellegrini G, Cassone A (1990) Differences in the antigenic expression of immunomodulatory mannoprotein constituents on yeast and mycelial forms of Candida albicans. J Gen Microbiol 136:1421–1428

    PubMed  CAS  Google Scholar 

  • Torosantucci A, Chiani P, Cassone A (2000) Differential chemokine response of human monocytes to yeast and hyphal forms of Candida albicans and its relation to the beta- 1, 6 glucan of the fungal cell wall. J Leuk Biol 68:923–932

    CAS  Google Scholar 

  • Torosantucci A, Romagnoli G, Chiani P, Stringaro A, Crateri P, Mariotti S, Teloni R, Arancia G, Cassone A, Nisini R (2004) Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells: a novel dimorphism-dependent mechanism to escape the host's immune response. Infect Immun 72:833–843

    Article  PubMed  CAS  Google Scholar 

  • Trinel PA, Plancke Y, Gerold P, Jouault T, Delplace F, Schwarz RT, Strecker G, Poulain D (1999) The Candida albicans phospholipomannan is a family of glycolipids presenting phosphoinositolmannosides with long linear chains of beta-1, 2-linked mannose residues. J Biol Chem 274:30520–30526

    Article  PubMed  CAS  Google Scholar 

  • Trinel PA, Maes E, Zanetta JP, Delplace F, Coddeville B, Jouault T, Strecker G, Poulain D (2002) Candida albicans phospholipomannan, a new member of the fungal mannose inositol phosphoceramide family. J Biol Chem 277:37260–37271

    Article  PubMed  CAS  Google Scholar 

  • Trinel PA, Delplace F, Maes E, Zanetta JP, Mille C, Coddeville B, Jouault T, Strecker G, Poulain D (2005) Candida albicans serotype B strains synthesize a serotype-specific phospholipomannan overexpressing a beta-1, 2-linked mannotriose. Mol Microbiol 58:984–998

    Article  PubMed  CAS  Google Scholar 

  • Tsoni SV, Brown GD (2008) beta-Glucans and dectin-1. Ann NY Acad Sci 1143:45–60

    Article  PubMed  CAS  Google Scholar 

  • Urban C, Sohn K, Lottspeich F, Brunner H, Rupp S (2003) Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell. FEBS Lett 544:228–235

    Article  PubMed  CAS  Google Scholar 

  • Urban C, Xiong X, Sohn K, Schroppel K, Brunner H, Rupp S (2005) The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol Microbiol 57:1318–1341

    Article  PubMed  CAS  Google Scholar 

  • Vediyappan G, Bikandi J, Braley R, Chaffin WL (2000) Cell surface proteins of Candida albicans: preparation of extracts and improved detection of proteins. Electrophoresis 21:956–961

    Article  PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37:986–990

    Article  PubMed  CAS  Google Scholar 

  • Vinces MD, Kumamoto CA (2007) The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology 153:2877–2884

    Article  PubMed  CAS  Google Scholar 

  • Vossen JH, Muller WH, Lipke PN, Klis FM (1997) Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins. J Bacteriol 179:2202–2209

    PubMed  CAS  Google Scholar 

  • Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA (2008) Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog 4:e1000040

    Article  PubMed  CAS  Google Scholar 

  • Weissman Z, Kornitzer D (2004a) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Weissman Z, Kornitzer D (2004b) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Weissman Z, Shemer R, Conibear E, Kornitzer D (2008) An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 69:201–217

    Article  PubMed  CAS  Google Scholar 

  • Wheeler RT, Kombe D, Agarwala SD, Fink GR (2008) Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 4:e1000227

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Sahni N, Daniels KJ, Pujol C, Srikantha T, Soll DR (2008) The same receptor, G protein, and mitogen-activated protein kinase pathway activate different downstream regulators in the alternative white and opaque pheromone responses of Candida albicans. Mol Biol Cell 19:957–970

    Article  PubMed  CAS  Google Scholar 

  • Yin QY, De Groot PWJ, Dekker HL, de Jong L, Klis FM, De Koster CG (2005) Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 280:20894–20901

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Oh SH, Cheng G, Green CB, Nuessen JA, Yeater K, Leng RP, Brown AJ, Hoyer LL (2004) ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150:2415–2428

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM, Soll DR, Hoyer LL (2006) Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152:2287–2299

    Article  PubMed  CAS  Google Scholar 

  • Zordan RE, Galgoczy DJ, Johnson AD (2006) Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci USA 103:12807–12812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Candida genome database (http://www.candidagenome.org/) provided gene and protein sequences and information. Louise Walker, University of Aberdeen for providing the electron micrograph in Fig. 4.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Munro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munro, C. (2010). Candida albicans Cell Wall Mediated Virulence. In: Ashbee, R., Bignell, E. (eds) Pathogenic Yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03150-2_4

Download citation

Publish with us

Policies and ethics