Skip to main content

miRNA Effects on mRNA Closed-Loop Formation During Translation Initiation

  • Chapter
  • First Online:
miRNA Regulation of the Translational Machinery

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 50))

Abstract

A flurry of recent studies, carried out primarily in transfected cells or in vitro translation systems, have attempted to reveal the molecular means by which animal microRNAs (miRNAs) attenuate mRNA translation. Despite these intense efforts it has not yet been possible to derive a consensus model for such a mechanism. Here we summarise our own experimental contributions to this topic, which led us to propose that miRNAs control early translation initiation by affecting eukaryotic initiation factor 4E/cap structure and poly(A) tail function, and place them in a current context of this rapidly moving and challenging field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319(5871):1787–1789

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  • Amrani N, Ghosh S, Mangus DA, Jacobson A (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453(7199):1276–1280

    Article  CAS  PubMed  Google Scholar 

  • Barreau C, Dutertre S, Paillard L, Osborne HB (2006) Liposome-mediated RNA transfection should be used with caution. RNA 12(10):1790–1793

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396–400

    Article  CAS  PubMed  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20(14):1885–1898

    Article  CAS  PubMed  Google Scholar 

  • Beilharz TH, Humphreys DT, Clancy JL, Thermann R, Martin DIK, Hentze MW, Preiss T (2009) microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS ONE 4, e6783

    Google Scholar 

  • Bergamini G, Preiss T, Hentze MW (2000) Picornavirus IRESes and the poly(A) tail jointly promote cap- independent translation in a mammalian cell-free system. RNA 6(12):1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Bert AG, Grepin R, Vadas MA, Goodall GJ (2006) Assessing IRES activity in the HIF-1alpha and other cellular 5’ UTRs. RNA 12(6):1074–1083

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125(6):1111–1124

    Article  CAS  PubMed  Google Scholar 

  • Borman AM, Kean KM (1997) Intact eukaryotic initiation factor 4G is required for hepatitis A virus internal initiation of translation. Virology 237:129–136

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16(2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genom Hum Genet 8:215–239

    Article  CAS  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447(7146):823–828

    Article  CAS  PubMed  Google Scholar 

  • Clancy JL, Nousch M, Humphreys DT, Westman BJ, Beilharz TH, Preiss T (2007) Methods to analyze microRNA-mediated control of mRNA translation. Methods Enzymol 431:83–111

    Article  CAS  PubMed  Google Scholar 

  • Ding XC, Slack FJ, Grosshans H (2008) The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle 7(19):3083–3090

    Article  CAS  PubMed  Google Scholar 

  • Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18(5):504–511

    Article  CAS  PubMed  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17(4):438–442

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008a) Getting to the root of miRNA-mediated gene silencing. Cell 132(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008b) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15(4):346–353

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin Y, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, Chen CYA, Shyu AB, Yates III JR, Hannon GJ, Filipowicz W, Duchaine TF, Sonenberg N (2009) Mammalian miRNA RISC recruits CAF-1 and PABP to affect PABP-dependent deadenylation. Mol Cell doi:10.1016/j.molcel.2009.08.004

    Google Scholar 

  • Faller M, Guo F (2008) MicroRNA biogenesis: there’s more than one way to skin a cat. Biochim Biophys Acta 1779(11):663–667

    CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  • Fraser CS, Doudna JA (2007) Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 5(1):29–38

    Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Google Scholar 

  • Gallie DR (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5(11):2108–2116

    Article  CAS  PubMed  Google Scholar 

  • Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5(10):827–835

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs. Science 312(5770):75–79

    Article  CAS  PubMed  Google Scholar 

  • Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15(13):1593–1612

    Article  CAS  PubMed  Google Scholar 

  • Hentze MW, Gebauer F, Preiss T (2007) Cis-regulatory sequences and trans-acting factors in translational control. In Mathews MB, Sonenberg N, Hershey JWB (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 269–295

    Google Scholar 

  • Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102(47):16961–16966

    Article  CAS  PubMed  Google Scholar 

  • Humphreys DT, Westman BJ, Martin DI, Preiss T (2007) Inhibition of translation initiation by a microRNA. In: Appasani K (ed) MicroRNAs: from basic science to disease biology. Cambridge University Press, Cambridge, UK, pp 85–101

    Google Scholar 

  • Iizuka N, Najita L, Franzusoff A, Sarnow P (1994) Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 14(11):7322–7330

    CAS  PubMed  Google Scholar 

  • Jackson RJ (2000) Comparative view of initiation site selection mechanisms. In Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 127–184

    Google Scholar 

  • Jackson RJ (2005) Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans 33(Pt 6):1231–1241

    CAS  PubMed  Google Scholar 

  • Jackson RJ, Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 2007(367):re1

    Google Scholar 

  • Jacobson A (1996) Poly(A) metabolism and translation: the closed-loop model. In Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 451–480

    Google Scholar 

  • Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73:657–704

    Article  CAS  PubMed  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129(6):1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450

    Article  CAS  PubMed  Google Scholar 

  • Kong YW, Cannell IG, de Moor CH, Hill K, Garside PG, Hamilton TL, Meijer HA, Dobbyn HC, Stoneley M, Spriggs KA, Willis AE, Bushell M (2008) The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci U S A 105(26):8866–8871

    Article  CAS  PubMed  Google Scholar 

  • Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci U S A 104(23):9667–9672

    Article  CAS  PubMed  Google Scholar 

  • Maroney PA, Yu Y, Fisher J, Nilsen TW (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13(12):1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317(5845):1764–1767

    Article  CAS  PubMed  Google Scholar 

  • Nissan T, Parker R (2008) Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 14(8):1480–1491

    Article  CAS  PubMed  Google Scholar 

  • Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13(12):1108–1114

    Article  CAS  PubMed  Google Scholar 

  • Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216(2):671–680

    Article  CAS  PubMed  Google Scholar 

  • Ostareck DH, Ostareck-Lederer A, Shatsky IN, Hentze MW (2001) Lipoxygenase mRNA silencing in erythroid differentiation: the 3’UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104(2):281–290

    Article  CAS  PubMed  Google Scholar 

  • Pestova TV, Hellen CU (2003) Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev 17(2):181–186

    Article  CAS  PubMed  Google Scholar 

  • Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623

    Article  CAS  PubMed  Google Scholar 

  • Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by let-7 MicroRNA in human cells. Science 309(5740):1573–1576

    Article  CAS  PubMed  Google Scholar 

  • Pique M, Lopez JM, Foissac S, Guigo R, Mendez R (2008) A combinatorial code for CPE-mediated translational control. Cell 132(3):434–448

    Article  CAS  PubMed  Google Scholar 

  • Poyry TA, Kaminski A, Jackson RJ (2004) What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame? Genes Dev 18(1):62–75

    Article  PubMed  Google Scholar 

  • Preiss T, Hentze MW (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392:516–520

    Article  CAS  PubMed  Google Scholar 

  • Preiss T, Hentze MW (2003) Starting the protein synthesis machine: eukaryotic translation initiation. Bioessays 25(12):1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Seggerson K, Tang L, Moss EG (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 243(2):215–225

    Article  CAS  PubMed  Google Scholar 

  • Sonenberg N, Dever TE (2003) Eukaryotic translation initiation factors and regulators. Curr Opin Struct Biol 13(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7G ppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21(16):1975–1982

    Article  CAS  PubMed  Google Scholar 

  • Svitkin YV, Imataka H, Khaleghpour K, Kahvejian A, Liebig HD, Sonenberg N (2001) Poly(A)-binding protein interaction with elF4G stimulates picornavirus IRES-dependent translation. RNA 7(12):1743–1752

    CAS  PubMed  Google Scholar 

  • Thermann R, Hentze MW (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447(7146):875–878

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128(6):1105–1118

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934

    Article  CAS  PubMed  Google Scholar 

  • Wakiyama M, Takimoto K, Ohara O, Yokoyama S (2007) Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21(15):1857–1862

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Love TM, Call ME, Doench JG, Novina CD (2006) Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell 22(4):553–560

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yanez A, Novina CD (2008) MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc Natl Acad Sci U S A 105(14):5343–5348

    Article  CAS  PubMed  Google Scholar 

  • Wilson JE, Powell MJ, Hoover SE, Sarnow P (2000) Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol 20(14):4990–4999

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Belasco JG (2008) Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell 29(1):1–7

    Article  PubMed  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039

    Article  CAS  PubMed  Google Scholar 

  • Zdanowicz A, Thermann R, Kowalska J, Jemielity J, Duncan K, Preiss T, Darzynkiewicz E, Hentze MW (2009) Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol Cell in press.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jennifer L Clancy, Belinda J Ryan (née Westman), Marco Nousch, and David IK Martin, who have all contributed to the research discussed in this chapter. Research in the authors’ lab was supported by grants from the National Health and Medical Research Council, the Australian Research Council, the Sylvia and Charles Viertel Charitable Foundation, and by the Victor Chang Cardiac Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Preiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beilharz, T.H., Humphreys, D.T., Preiss, T. (2010). miRNA Effects on mRNA Closed-Loop Formation During Translation Initiation. In: Rhoads, R. (eds) miRNA Regulation of the Translational Machinery. Progress in Molecular and Subcellular Biology(), vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03103-8_7

Download citation

Publish with us

Policies and ethics