Advertisement

Modeling Data Warehouse Schema Evolution over Extended Hierarchy Semantics

  • Sandipto Banerjee
  • Karen C. Davis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5530)

Abstract

Models for conceptual design of data warehouse schemas have been proposed, but few researchers have addressed schema evolution in a formal way and none have presented software tools for enforcing the correctness of multidimensional schema evolution operators. We generalize the core features typically found in data warehouse data models, along with modeling extended hierarchy semantics. The advanced features include multiple hierarchies, non-covering hierarchies, non-onto hierarchies, and non-strict hierarchies. We model the constructs in the Uni-level Description Language (ULD) as well as using a multilevel dictionary definition (MDD) approach. The ULD representation provides a formal foundation to specify transformation rules for the semantics of schema evolution operators. The MDD gives a basis for direct implementation in a relational database system; we define model constraints and then use the constraints to maintain integrity when schema evolution operators are applied. This paper contributes a formalism for representing data warehouse schemas and determining the validity of schema evolution operators applied to a schema. We describe a software tool that allows for visualization of the impact of schema evolution through the use of triggers and stored procedures.

Keywords

Data warehouse conceptual modeling data warehouse schema evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atzeni, P., Cappellari, P., Bernstein, P.: A multilevel dictionary for model management. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 160–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases. In: Proceedings of the 13th International Conference on Data Engineering (ICDE), Birmingham, U.K, April 7-11, 1997, pp. 232–243 (1997)Google Scholar
  3. 3.
    Abelló, A., Samos, J., Saltor, F.: YAM2 (Yet Another Multidimensional Model). In: Proceedings of the International Database Engineering & Applications Symposium (IDEAS), Edmonton, Canada, July 17-19, 2002, pp. 172–181 (2002)Google Scholar
  4. 4.
    Bækgaard, L.: Event-Entity-Relationship Modeling in Data Warehouse Environments. In: Proceedings of 2nd ACM Second International Workshop on Data Warehousing and OLAP (DOLAP), Kansas City, Missouri, USA, November 6, 1999, pp. 9–14 (1999)Google Scholar
  5. 5.
    Bowers, S., Delcambre, L.: On Modeling Conformance for Flexible Transformation over Data Models. Knowledge Transformation for the Semantic Web 95, 34–48 (2003)Google Scholar
  6. 6.
    Bowers, S., Delcambre, L.: The uni-level description: A uniform framework for representing information in multiple data models. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 45–58. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Bowers, S., Delcambre, L.: Using the Uni-Level Description (ULD) to Support Data-Model Interoperability. Data and Knowledge Engineering 59(3), 511–533 (2006)CrossRefGoogle Scholar
  8. 8.
    Bouzeghoub, M., Kedad, Z.: A logical model for data warehouse design and evolution. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 178–188. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Blaschka, M., Sapia, C., Höfling, G.: On schema evolution in multidimensional databases. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 153–164. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Chen, J., Chen, S., Rundensteiner, E.: A transactional model for data warehouse maintenance. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 247–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. SIGMOD Record 26(1), 65–74 (1997)CrossRefGoogle Scholar
  12. 12.
    Claypool, K., Natarajan, C., Rundensteiner, E., Rundensteiner, E.: Optimizing Performance of Schema Evolution Sequences. In: Dittrich, K.R., Guerrini, G., Merlo, I., Oliva, M., Rodriguez, M.E. (eds.) ECOOP-WS 2000. LNCS, vol. 1944, pp. 114–127. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Claypool, K., Rundensteiner, E., Heineman, G.: Evolving the Software of a Schema Evolution System. In: Balsters, H., De Brock, B., Conrad, S. (eds.) FoMLaDO 2000 and DEMM 2000. LNCS, vol. 2065, pp. 68–84. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Datta, A., Thomas, H.: A Conceptual Model and Algebra for On-line Analytical Processing in Data Warehouses. In: Proceedings of the 7th Workshop for Information Technology and Systems (WITS), Atlanta, Georgia, USA, December 13-14, 1997, pp. 91–100 (1997)Google Scholar
  15. 15.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Datacube: A Relational Aggregation Operator Generalizing Group-by, Cross-tab, and Sub-totals. Journal of Data Mining and Knowledge Discovery, ch. 1, 29–53 (1997)Google Scholar
  16. 16.
    Gyssens, M., Lakshmanan, L.: A Foundation for Multi-Dimensional Databases. In: Proceedings of the 23rd International Conference on Very Large Databases (VLDB), Athens, Greece, August 25-29, 1997, pp. 106–115 (1997)Google Scholar
  17. 17.
    Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema Versioning in Data Warehouses. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp. 415–428. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual Model for Data Warehouses. International Journal of Cooperative Information Systems (IJCIS) 7(2-3), 215–247 (1998)CrossRefGoogle Scholar
  19. 19.
    Golfarelli, M., Rizzi, S.: A Methodological Framework for Data Warehousing Design. In: Proceedings of the 1st International Workshop on Data Warehousing and OLAP (DOLAP), Washington, DC, USA, November 2-7, pp. 3–9 (1998)Google Scholar
  20. 20.
    Golfarelli, M., Rizzi, S.: WAND: A CASE Tool for Data Warehouse Design. In: Proceedings of the 17th International Conference on Data Engineering (ICDE), Heidelberg, Germany, April 2-6, pp. 7–9 (2001)Google Scholar
  21. 21.
    Hahn, K., Sapia, C., Blaschka, M.: Automatically Generating OLAP Schemata from Conceptual Graphical Models. In: Proceedings of the 3rd ACM International Workshop on Data Warehousing and OLAP (DOLAP), pp. 9–16 (2000)Google Scholar
  22. 22.
    Hümmer, W., Lehner, W., Bauer, A., Schlesinger, L.: A decathlon in multidimensional modeling: Open issues and some solutions. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 275–285. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Design. In: Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW), Stockholm, Sweden, June 5-6, pp. 6:1–6:11(2000)Google Scholar
  24. 24.
    Hurtado, C., Mendelzon, A.: Reasoning about summarizability in heterogeneous multidimensional schemas. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 375–389. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Hurtado, C., Mendelzon, A., Vaisman, A.: Maintaining Data Cubes under Dimension Updates. In: Proceedings of 15th International Conference of Data Engineering (ICDE), Sydney, Australia, March 23-26, pp. 346–355 (1999)Google Scholar
  26. 26.
    Jensen, C., Kligys, A., Pedersen, T., Timko, I.: Multidimensional Data Modeling for Location Based Services. The VLDB Journal 13(1), 1–21 (2004)CrossRefGoogle Scholar
  27. 27.
    Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons, Inc., New York (1996)Google Scholar
  28. 28.
    Kaas, C., Pedersen, T.B., Rasmussen, B.: Schema Evolution for Stars and Snowflakes. In: Proceedings of the 6th International Conference on Enterprise Information Systems, Porto, Portugal, April 14-17, pp. 425–433 (2004)Google Scholar
  29. 29.
    Luján-Mora, S., Trujillo, J., Song, I.: A UML Profile for Multidimensional Modeling in Data Warehouses. Data and Knowledge Engineering 59(3), 725–769 (2006)CrossRefGoogle Scholar
  30. 30.
    Li, C., Wang, X.: A Data Model for Supporting On-Line Analytical Processing. In: Proceedings of the 5th International Conference on Information and Knowledge Management (CIKM), Rockville, Maryland, November 12-16, pp. 81–88 (1996)Google Scholar
  31. 31.
    Malinowski, E., Zimányi, E.: OLAP hierarchies: A conceptual perspective. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 477–491. Springer, Heidelberg (2004)Google Scholar
  32. 32.
    Mazón, J.-N., Trujillo, J.: An MDA Approach for the Development of Data Warehouses. Decision Support Systems 45(1), 41–58 (2008)CrossRefGoogle Scholar
  33. 33.
    Papastefanatos, G., Vassiliadis, P., Vassiliou, Y.: Adaptive Query Formulation to Handle Database Evolution. In: Proceedings of the Conference on Advanced Information Systems Engineering: CAiSE Forum, Luxembourg (2006)Google Scholar
  34. 34.
    Pardillo, J., Mazón, J.-N., Trujillo, J.: Model-driven Metadata for OLAP Cubes from the Conceptual Modeling of Data Warehouses. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 13–22. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Pedersen, T., Jensen, C.: Research Issues in Clinical Data Warehousing. In: Proceedings of the 10th International Conference on Scientific and Statistical Database Management, Capri, Italy, July 1-3, pp. 43–52 (1998)Google Scholar
  36. 36.
    Pedersen, T., Jensen, C.: Multidimensional Data Modeling for Complex Data. In: Proceedings of 15th International Conference on Data Engineering (ICDE), Sydney, Australia, March 23-26, pp. 336–345 (1999)Google Scholar
  37. 37.
    Pedersen, T., Jensen, C., Dyreson, C.: A Foundation for Capturing and Querying Complex Multidimensional Data. Information Systems 26(5), 383–423 (2001)zbMATHCrossRefGoogle Scholar
  38. 38.
    Prat, N., Akoka, J., Comyn-Wattiau, I.: A UML-based Data Warehouse Design Method. Decision Support Systems 42, 1449–1473 (2006)CrossRefGoogle Scholar
  39. 39.
    Quix, C.: Repository Support for Data Warehouse Evolution. In: Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW 1999), Heidelberg, Germany, June 14-15, p. 4 (1999)Google Scholar
  40. 40.
    Rafanelli, M., Shoshani, A.: STORM: A Statistical Object Representation Model. In: Michalewicz, Z. (ed.) SSDBM 1990. LNCS, vol. 420, pp. 14–29. Springer, Heidelberg (1990)Google Scholar
  41. 41.
    Rizzi, S., Golfarelli, M.: X-Time: Schema Versioning and Cross-Version Querying in Data Warehouses. In: Proceedings of the 23rd International Conference on Data Engineering (ICDE), Istanbul, Turkey, April 15-20, pp. 1471–1472 (2007)Google Scholar
  42. 42.
    Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R Model for the Multidimensional Paradigm. In: Kambayashi, Y., Lee, D.-L., Lim, E.-p., Mohania, M., Masunaga, Y. (eds.) ER Workshops 1998. LNCS, vol. 1552, pp. 105–116. Springer, Heidelberg (1999)Google Scholar
  43. 43.
    Tryfona, N., Busborg, F., Christiansen, J.: StarER: A Conceptual Model for Data Warehouse Design. In: Proceedings of the 2nd ACM International Workshop on Data Warehousing and OLAP, Kansas City, Missouri, USA, November 6, pp. 3–8 (1999)Google Scholar
  44. 44.
    Tsois, A., Karayannidis, N., Sellis, T.: MAC: Conceptual data modeling for OLAP. In: Proceedings of the 3rd International Workshop on Design and Management of Data Warehouses (DMDW), Interlaken, Switzerland, June 4, p. 5 (2001)Google Scholar
  45. 45.
    Vassiliadis, P.: Modeling Multidimensional Databases, Cubes and Cube Operations. In: Proceedings of 10th International Conference on Scientific and Statistical Database Management (SSDBM), Capri, Italy, July 1-3, pp. 53–62 (1998)Google Scholar
  46. 46.
    Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Skiadopoulos, S.: A Generic and Customizable Framework for the Design of ETL Scenarios. Information Systems 30(7), 492–525 (2005)CrossRefGoogle Scholar
  47. 47.
    Wrembel, R., Morzy, T.: Managing and querying versions of multiversion data warehouse. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1121–1124. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sandipto Banerjee
    • 1
  • Karen C. Davis
    • 2
  1. 1.MicroStrategy, Inc., 1861 International DriveMcLeanUSA
  2. 2.Electrical & Computer Engineering Dept.University of CincinnatiCincinnatiUSA

Personalised recommendations