Advertisement

A Unified Object Constraint Model for Designing and Implementing Multidimensional Systems

  • François Pinet
  • Michel Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5530)

Abstract

Models for representing multidimensional systems usually consider that facts and dimensions are two different things. In this paper we propose a model based on UML which unifies the representations of fact and of dimension members. Since a given element can play the role of a fact or of a dimension member, this model allows for more flexibility in the design and the implementation of multidimensional systems. Moreover this model offers the possibility to express various constraints to guarantee desirable properties for data. We then show that this model is able to handle most of the hierarchies which have been suggested to take real situations into account and to characterize certain properties of summarizability. Using this model we propose a complete development cycle of a multidimensional system. It appears that this cycle can be partially automated and that an end user can control the design and the implementation of his system himself.

Keywords

Conceptual Schema Object Constraint Language Fact Node Fact Class Multidimensional System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelló, A., Samos, J., Saltor, F.: Understanding Analysis Dimensions in a Multidimensional Object-Oriented Model. In: Proc. of Intl. Workshop on Design and Management of Multidimensional structures, DMDW 2001, Interlaken, Switzerland, June 4 (2001)Google Scholar
  2. 2.
    Abelló, A., Samos, J., Saltor, F.: A framework for the classification and description of multidimensional data models. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 668–677. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Abelló, A., Samos, J., Saltor, F.: Understanding facts in a multidimensional object-oriented model. In: Proceedings of the 4th ACM International Workshop on Data Warehousing and OLAP (DOLAP 2001), pp. 32–39 (2001)Google Scholar
  4. 4.
    Abelló, A., Samos, J., Saltor, F.: YAM2: A Multidimensional Conceptual Model Extending UML. Information Systems 31, 541–567 (2006)CrossRefGoogle Scholar
  5. 5.
    Agrawal, R., Gupta, A., Sarawagi, S.: Modelling Multidimensional Databases. In: 13th International Conference on Data Engineering, ICDE 1997, Birmingham, UK, April 7-11, pp. 232–243 (1997)Google Scholar
  6. 6.
    Balsters, H.: Modelling Database Views with Derived Classes in the UML/OCL-Framework. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 295–309. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Blaschka, M., Sapia, C., Hofling, G., Dinter, B.: Finding your way through multidimensional data models. In: Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, pp. 198–203. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Carpani, F., Ruggia, R.: An Integrity Constraints Language for a Conceptual Multidimensional Data Model. In: 13th International Conference on Software Engineering and Knowledge Engineering (SEKE 2001), pp. 220–227 (2001)Google Scholar
  9. 9.
    Datta, A., Thomas, H.: The Cube Data Model: A Conceptual Model and Algebra for on-line Analytical Processing in Multidimensional structures. Decision Support Systems 27(3), 289–301 (1999)CrossRefGoogle Scholar
  10. 10.
    Demuth, B., Hußmann, H., Loecher, S.: OCL as a specification language for business rules in database applications. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 104–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Giovinazzo, W.A.: Object-oriented data warehouse design: building a star schema. Prentice Hall PTR, Upper Saddle River (2000)Google Scholar
  12. 12.
    Ghozzi, F., Ravat, F., Teste, O., Zurfluh, G.: Constraints and Multidimensional Databases. In: ICEIS, pp. 104–111 (2003)Google Scholar
  13. 13.
    Golfarelli, M., Maio, D., Rizzi, S.: Conceptual Design of Multidimensional structures from E/R Schemes. In: Proc. of the 32th HICSS (1998)Google Scholar
  14. 14.
    Gyssens, M., Lakshmanan, V.S.: A Foundation for Multi-dimensional Databases. In: Proc. of the 23rd Conference on Very Large Databases, pp. 106–115 (1997)Google Scholar
  15. 15.
    Hahn, K., Sapia, C., Blaschka, M.: Automatically Generating OLAP Schemata from Conceptual Graphical Models. In: Proc. of the 3rd ACM International Workshop on Data Warehousing and OLAP, DOLAP 2000, McLean, Virginia, USA (2000)Google Scholar
  16. 16.
    Herden, O.: A Design Methodology for Data Warehouses. In: Proc. of the CAISE Doctoral Consortium, Stockholm (2000)Google Scholar
  17. 17.
    Hurtado, C.A., Mendelzon, A.O.: OLAP Dimension Constraints. In: PODS 2002, pp. 169–179 (2002)Google Scholar
  18. 18.
    Hurtado, C.A., Gutiérrez, C., Mendelzon, A.O.: Capturing summarizability with integrity constraints in OLAP. ACM Trans. Database Syst. (TODS) 30(3), 854–886 (2005)CrossRefGoogle Scholar
  19. 19.
    Hùsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Multidimensional Structures Design. In: Proc. of Intl. Workshop on Design and Management of Multidimensional structures (DMDW 2000), Stockholm, Sweden, June 5-6 (2000)Google Scholar
  20. 20.
    Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering multidimensional structure in relational data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 138–148. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons Inc., New York (1996)Google Scholar
  22. 22.
    Kimball, R., Reeves, L., Ross, M., Thornwaite, W.: The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data Warehouses. John Wiley & Sons Inc., New York (1998)Google Scholar
  23. 23.
    Klasse Objecten: OCL tools Web site (2005), http://www.klasse.nl/ocl
  24. 24.
    Lechtenbôrger, J., Vossen, G.: Multidimensional Normal Forms for Multidimensional structure Design. Information Systems 28(5) (2003)Google Scholar
  25. 25.
    Lehner, W.: Modeling Large Scale OLAP Scenarios. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 153–167. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Lehner, W., Albrecht, J., Wedekind, H.: Normal Forms for Multidimensional Data Bases. In: l0th Intl. Conference on Scientific and Statistical Data Management (SSDBM 1998), Capri, Italy, pp. 63–72 (1998)Google Scholar
  27. 27.
    Lenz, H.J., Shoshani, A.: Summarizability in OLAP and Statistical Data Bases. In: Proc. of the 9th SSDBM, pp. 132–143 (1997)Google Scholar
  28. 28.
    Levene, M., Loizou, G.: Why is the Star Schema a Good Multidimensional structure Design (1999), http://citeseer.ni.nec.com/457156.html
  29. 29.
    Levene, M., Loizou, G.: Why is the Snowflake Schema a Good Multidimensional structure Design. Information Systems 28(3), 225–240 (2003)CrossRefGoogle Scholar
  30. 30.
    Li, C., Wang, X.S.: A Data Model for Supporting on-line Analytical Processing. In: Proc. of the Fifth International Conference on Information and Knowledge Management, pp. 81–88 (1996)Google Scholar
  31. 31.
    Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML Profile for Multidimensional Modeling in Data Warehouses. Data & Knowledge Engineering 59, 725–769 (2006)CrossRefGoogle Scholar
  32. 32.
    Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: From conceptual modeling to logical representation. Data Knowl. Eng. (DKE) 59(2), 348–377 (2006)CrossRefGoogle Scholar
  33. 33.
    Malinowski, E., Zimanyi, E.: Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications, 435 pages. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  34. 34.
    Mansmann, S., Scholl, M.H.: Empowering the OLAP Technology to Support Complex Dimension Hierarchies. International Journal of Data Warehousing and Mining 3(4), 31–50 (2007)Google Scholar
  35. 35.
    Mansmann, S., Scholl, M.H.: Extending the Multidimensional Data Model to Handle Complex Data. Journal of Computing Science and Engineering 1(2), 125–160 (2007)Google Scholar
  36. 36.
    Mazon, J.N., Trujillo, J.: An MDA Approach for the Development of Data Warehouses. Decision Support Systems (45), 41–58 (2008)CrossRefGoogle Scholar
  37. 37.
    Moody, L.D., Kortink, M.A.R.: From Enterprise Models to Dimensional Models: A Methodology for Multidimensional Structure and Data Mart Design. In: Proc. of the International Workshop on Design and Management of Multidimensional structures, DMDW 2000, Stockholm, Sweden (2000)Google Scholar
  38. 38.
    Niemi, T., Nummenmaa, J.: Logical Multidimensional Database Design for Ragged and Unbalanced Aggregation Hierarchies. In: Proc. of the International Workshop on Design and Management of Multidimensional structures, DMDW 2001, Interlaken, Switzerland (2001)Google Scholar
  39. 39.
    Nguyen, T.B., Tjoa, A.M., Wagner, R.: An Object Oriented Multidimensional Data Model for OLAP. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 69–82. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  40. 40.
    OMG: OCL 2.0 specification version 2.0. OMG specification, 185 pages (2005), http://www.omg.org
  41. 41.
    Pedersen, T.B., Jensen, C.S.: Multidimensional Data Modelling for Complex Data. In: Proc. of the Intl. Conference on Data Engineering, ICDE 1999, pp. 336–345 (1999)Google Scholar
  42. 42.
    Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: A foundation for capturing and querying complex multidimensional data. Information Systems 26(5), 383–423 (2001)zbMATHCrossRefGoogle Scholar
  43. 43.
    Pourabbas, E., Rafanelli, M.: Characterization of Hierarchies and some Operators in OLAP Environment. In: DOLAP 1999, Kansas City, USA, pp. 54–59 (1999)Google Scholar
  44. 44.
    Prat, N., Akoka, A., Comyn-Wattiau, I.: A UML-based data warehouse design method. Decision Support Systems (DSS) 42(3), 1449–1473 (2006)CrossRefGoogle Scholar
  45. 45.
    Rafanelli, M., Shoshani, A.: STORM: A Statistical Object Representation Model. In: Statistical and Scientific Data Base Management Conference (SSDBM), pp. 14–29 (1990)Google Scholar
  46. 46.
    Song, I.Y., Medsker, C., Rowen, W., Ewen, E.: An Analysis of Many-to-Many Relationships Between Fact and Dimension Tables in Dimension Modeling. In: Proceedings of the Int’l. Workshop on Design and Management of Data Warehouses, pp. 6-1–6-13 (2001) Google Scholar
  47. 47.
    Vassiliadis, P., Skiadopoulos, S.: Modelling and Optimisation Issues for Multidimensional Databases. In: Proc. of the 12th Intl. Conference CAISE, Stockholm, Sweden, pp. 482–497 (2000)Google Scholar
  48. 48.
    Theodoratos, D., Ligoudistianos, S., Sellis, T.: View selection for designing the global Multidimensional structure. Data & Knowledge Engineering 39, 219–240 (2001)zbMATHCrossRefGoogle Scholar
  49. 49.
    Trujillo, J., Palomar, M.: An object Oriented Approach to Multidimensional Database Conceptual Modeling (OOMD). In: Proc. of the 1st ACM international workshop on Data warehousing and OLAP, Washington, pp. 16–21 (1998)Google Scholar
  50. 50.
    Tsois, A., Karayannidis, N., Sellis, T.: MAC: Conceptual Data Modeling for OLAP. In: Proc. of the Intl Workshop on Design and Management of Multidimensional structures (DMDW 2001), Interlaken, Switzerland, June 4 (2001)Google Scholar
  51. 51.
    Warmer, J., Kleppe, A.: OCL: The constraint language of the UML. Journal of Object-Oriented Programming 12, 13–28 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François Pinet
    • 1
  • Michel Schneider
    • 1
    • 2
  1. 1.CemagrefAubière CedexFrance
  2. 2.LIMOSAubière CedexFrance

Personalised recommendations